Building a Linux-Based High-Performance Compute Cluster

The Rocks clustering package from the University of California at San Diego makes it easy to build and maintain a high-performance compute cluster with off-the-shelf hardware.
Step 7. Configure the Cluster

As you enter data on these screens, the installation routine is building a small MySQL database that details all of the component configurations in your cluster. The various tables Linux needs to run (like /etc/hosts) will be generated as an SQL report from this database. If you want to make changes in the system's configuration, the tools that Rocks provides actually change the database first, then run the appropriate reports to regenerate the system configuration files. This significantly reduces the chance for errors to creep into these files. It still is possible to edit the automatically generated system files manually, but remember that the next time you use the Rocks tools to reconfigure the cluster, your manual changes will be overwritten by the automatically generated SQL report versions.

The next screen (Figure 6) allows you to enter information about your cluster. If the cluster will be connected to your enterprise network, you should enter a fully qualified hostname to be consistent with your domain. The cluster name you enter in the Cluster Name field will appear in the management screens during cluster operation. Once you are satisfied with your entries, click Next to go to the configuration of the head node network connection to the private network (eth0).

Figure 6. Cluster Information

Step 8. Configure the Cluster's Network

The next screen (Figure 7) lets you configure the cluster's network. The installation routine automatically selects as the IP address for eth0 on the head node. Because this is a private network, you probably won't need to change this setting. If your public network also happens to be in the 10.1.X.X configuration, change this to something that doesn't conflict with your existing network. Clicking Next brings up the head node public network connection configuration screen.

Figure 7. Network Configuration

Step 9. Configure the Public Network

Figure 8 shows configuring the “public” connection of the head node, its connection to the rest of your systems. The public connection for the head node must be configured with a fixed IP address. The public network for this example is configured as 192.168.0.X with a netmask of Make sure the head node does not conflict with other servers and workstations on the public network. On the following screen (Figure 9), configure the local Gateway and DNS Server IP addresses for the head node to use.

Figure 8. Head Node Public Network Configuration

Figure 9. Head Node Gateway and DNS Configuration

Step 10. Configure the Root Password and Time Zone

On the next two screens (Figures 10 and 11), enter the root password and configure the time zone and NTP server for the head node.

Figure 10. Root Password

Figure 11. Time Zone and NTP Server


White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState