Hack and / - Linux Troubleshooting, Part III: Remote Networks

The Internet is down. Or, is it? Read more to find out how to know for sure.

This column is the third in a series dedicated to one of my favorite subjects: troubleshooting. Because my column generally is aimed more at tips and tricks and less on philosophy and design, I don't talk much about overall approaches to problem solving. Instead, in this series, I describe some general classes of problems you might find on a Linux system, and then I discuss how to use common tools, most of which are probably already on your system, to isolate and resolve each class of problem.

In my previous column, I introduced some ways to troubleshoot network problems on your local network. Many network problems extend past your local network and either onto other local subnets or onto the Internet itself. In this column, I provide you with the tools and techniques for answering that immortal question: is the Internet down, or is it just me?

The Internet Is Down

The scenario I use here to test troubleshooting skills is one that everyone has run into at one point or another—you try to load a Web site, perhaps even a reliable site like Google, and it won't come up. Because I covered local network troubleshooting in my last column, I'm assuming you already have gone through those steps and are ready to proceed past the local network. Even though this example deals with testing access to the Internet, you can use the same steps to troubleshoot problems accessing any remote network.

Test Your Gateway

For your computer to communicate with any other computer outside your local network, you must have a gateway (router) configured on your local network, and you must be able to reach it. Without getting into heavy-duty network theory, a router connects two or more networks and knows how to route packets between those networks. Your Linux computer has a list of all of the routers it knows about for each network of which it is a member and when it should use those routers all stored in its routing table. You can use the route command to show your computer's current routing table:

$ route -n
Kernel IP routing table
Destination  Gateway   Genmask         Flags Metric Ref  Use Iface     *   U     0      0     0 eth0
default          UG    100    0     0 eth0

In the above example, I have one gateway defined: It is listed as my default gateway, which is the router it will use whenever it doesn't have any other routers defined for that network. In my case, it's also the only router in my routing table. That means any time my machine wants to communicate with a remote network (in my example, anything that's not within or–, it's going to send the packet to to forward on.

So now that I know my default gateway, I use ping to test whether it's available:

$ ping -c 5
PING ( 56(84) bytes of data.
64 bytes from icmp_seq=1 ttl=64 time=3.13 ms
64 bytes from icmp_seq=2 ttl=64 time=1.43 ms
64 bytes from icmp_seq=3 ttl=64 time=1.79 ms
64 bytes from icmp_seq=5 ttl=64 time=1.50 ms

--- ping statistics ---
5 packets transmitted, 4 received, 20% packet loss, time 4020ms
rtt min/avg/max/mdev = 1.436/1.966/3.132/0.686 ms

In this example, four out of five ping packets were received, so I can be reasonably sure my gateway works. If I couldn't ping the gateway, either my network admin is blocking ICMP packets (I hate when people do that), my switch port is set to the wrong VLAN, or my gateway is truly down. If the gateway is down, fixing the problem might mean rebooting your DSL or wireless router (if that's how you connect to the Internet) or moving your troubleshooting to whatever device is acting as your gateway.

Test DNS

In my case, I was able to ping the gateway, so I'm ready to move on to DNS. Because most of us don't browse the Web by IP address, we need DNS to resolve the hostnames we type into IP addresses. If DNS isn't working correctly, even if we technically can reach that remote IP address, we never will know what the IP address is.

A basic way to test DNS is via the nslookup command:

$ nslookup www.linuxjournal.com

Non-authoritative answer:
Name:	www.linuxjournal.com

In this example, DNS is functioning correctly as far as I can tell. I say as far as I can tell, because I'm assuming that is the correct IP address for www.linuxjournal.com. If it were the wrong address, that very well could be the cause of the problem! The DNS server in this case is, but in some environments, it could be the same IP address as your gateway.

Even though the DNS server worked, because I want to show how to troubleshoot DNS, I need some examples of how it can fail. To illustrate this, let me show a few different nslookup commands that have failed:

$ nslookup www.linuxjournal.com
;; connection timed out; no servers could be reached

This error tells me that nslookup couldn't communicate with my DNS server. That could be because either I don't have any name servers configured on my system or I just can't reach them. To see whether I have any name servers configured, I would check my /etc/resolv.conf file. This file keeps track of what name servers I should use. In my case, it would look like this:

search example.net

If your resolv.conf file doesn't have a name server entry, you have found the problem. You need to add the IP address of your name server here. Because I do have a name server defined in resolv.conf, the next step is to attempt to ping the name server's IP with the same ping command that I used for the gateway above. If you can't ping the name server, either a firewall is blocking ICMP (those pesky network administrators!) or there's a routing problem between you and the name server. To rule out the latter, use a tool called traceroute. Traceroute tests the route between you and a remote IP address. To use it, type traceroute followed by the IP address you want to reach. In my case, I would use

$ traceroute
traceroute to (, 30 hops max, 40 byte packets
1 (  5.432 ms  5.206 ms  5.472 ms
2 (  8.039 ms  8.348 ms  8.643 ms

In this example, I can route to successfully. To get there, my packets first go to and then move straight to This tells me that is likely the gateway for both networks. If there are more routers between you and your remote server, you will have more hops in between. On the other hand, if you do have a routing problem, your output might look more like the following:

$ traceroute
traceroute to (, 30 hops max, 40 byte packets
1 (  5.432 ms  5.206 ms  5.472 ms
2  * * *
3  * * *

If you start seeing asterisks in the output, you know the problem likely begins on the last router on the list, so you would need to start troubleshooting from that router. Instead, you might see output like this:

$ traceroute
traceroute to (, 30 hops max, 40 byte packets
1 (  5.432 ms  5.206 ms  5.472 ms
1 (  3006.477 ms !H  3006.779 ms !H  3007.072 ms

This means your ping timed out at the gateway, so the remote host could be down, unplugged or otherwise inaccessible, so you would need to troubleshoot its connection to the network.

Note: traceroute relies on ICMP, so if ICMP is blocked on your network, install a tool called tcptraceroute to perform a similar test over TCP (the syntax is the same, you just type tcptraceroute instead of traceroute).

If you can ping the name server but it isn't responding to you, go back to my previous column and perform all the troubleshooting steps to test whether the remote port is open and accessible on the remote host. Keep in mind though that DNS servers use port 53 on TCP and UDP. Again, if you aren't sure what port a service uses, check the /etc/services file on your system. It lists most of the common services you will use.


Kyle Rankin is VP of engineering operations at Final, Inc., the author of many books including Linux Hardening in Hostile Networks, DevOps Troubleshooting and The Official Ubuntu Server Book, and a columnist for Linux Journal. Follow him @kylerankin