Linux on Linksys Wi-Fi Routers

Hacking this reliable, inexpensive platform can be your first step to a successful wireless project. Chain access points together to cover a wide area, crank up the power level, get more working space in Flash memory and more.
Adding Secure Shell (SSH)

One enterprising individual ported the entire OpenSSH toolchain to the Linksys box. Unfortunately, the size of the OpenSSH binary means that many standard Linksys functions must be removed to make room. Plus, the resulting RAM requirements are at the limits of available memory. What is needed is an SSH server with a small memory footprint, and the Dropbear server fits the bill nicely. Matt Johnson designed the Dropbear SSH dæmon specifically to run in memory-constrained systems such as the Linksys.

The standard Linksys Linux implementation lacks many of the normal files needed for multiuser Linux systems. Two of these—passwd and groups in the /etc directory—are required by the vast majority of Linux applications. In order to run the Dropbear server, we need to add these files to the Flash build.

By creating a passwd file with a root entry and no password and a matching groups file, we can make Dropbear almost happy enough to run. These files are copied to the /etc directory of the Flash image and are read-only on the Linksys.

When running, Dropbear also needs to access a private key that is used for SSH handshaking and authentication, as well as a known_hosts file containing the public keys of approved client machines. Generating the private key with the dropbearkey program is a snap, but storing it on the Linksys is a bit trickier.

The WRT54G contains a hash map of key name and value pairs located in nonvolatile storage called nvram. The bundled nvram utility and API allows us to read and write to this memory area. The Dropbear private key and our public key ID from in our home .ssh directory are stored in nvram and copied to /var in the RAM disk on system start.

We compile Dropbear with support for key-file authorization and now have a secure way to log in to the Linksys. If you need password login, the Dropbear code can be patched to read the system password from nvram and to add the ability for password logins as well.

Increasing Flash Memory Compression

After adding such utilities as SSH and telnetd, you soon find your Linksys firmware image bumping the limits of the Flash storage space on the device. What you need is a filesystem with better compression than cramfs offers, one that is compatible with the Linksys Linux kernel.

The default cramfs filesystem compresses data in 4K blocks, but compressing on 4K boundaries limits the compression ratios that can be achieved. If we could find a filesystem that compressed larger blocks of data but mapped correctly to the page size in the OS, we would be able to put far more data and applications in the firmware.

Phillip Lougher's squashfs filesystem compresses in 32K blocks and is compatible with the 2.4 and 2.6 kernels. If we could move the Linksys firmware from cramfs to squashfs, we might have enough room for a VPN client and server in the system.

The Linksys kernel is a customized 2.4.20 source tree modified by Broadcom. Broadcom is a leading 802.11g chip maker and is responsible for the CPU and radio chips in the WRT54G. The squashfs tar file contains patches for the 2.4.20 through 2.4.22 kernels. Unfortunately, none of these applies cleanly to the Broadcom kernel tree, so a bit of hand editing is necessary. The patch with the fewest errors is the 2.4.22 version, which misses only one hunk when applied. By reading the patch file and finding the missing hunk, you can patch the missing code manually. You also can find a WRT54G-specific squashfs patch on the Sveasoft Web site.

The next step is to edit the Broadcom kernel startup code and add a check for squashfs. The do_mount.c file contains nearly identical code and can be used as a guide when patching the startup.c file in the arch/mips/brcm-boards/bcm947xx subdirectory.

After patching the kernel, the router Makefile must be patched to generate a squashfs image and the Linux kernel configuration must be set to include squashfs support.

This is well worth the effort, however. On recompile you should find some 500K free bytes, compared to the stock cramfs filesystem.



Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.

dreambox 500s

Dreambox 500s's picture

Thanks for your sharing! very impressive!

Wireless signal through a metal shed

Howard's picture

Any one know what equipment I need to send a wirless signal from my router across the yard through a metal shed so I can get a signal on the inside.

You need an ethernet cable

Anonymous's picture

You need an ethernet cable punched through the wall and ran across your yard. connect the ethernet cable to a switch in your house and you are good to go. Physics dictates that you won't be able to send a good signal through your faraday cage, uh, I mean metal shed. :-p

Ping Hack Script

Shawn's picture

Here's a free ping hack script.