# MuPAD

The default order of a power series is 6. This can be changed
either by changing the value of **ORDER** (analogous
to **DIGITS** above), or by including the order in
the **series** command. This last inclusion is
optional.

>> tx:=series(tan(x),x,12); 3 5 7 9 11 x 2 x 17 x 62 x 1382 x 12 x + -- + ---- + ----- + ----- + -------- + O(x ) 3 15 315 2835 155925 >> cx:=series(cos(x),x,12); 2 4 6 8 10 x x x x x 12 1 - -- + -- - --- + ----- - ------- + O(x ) 2 24 720 40320 3628800 >> tx*cx; 3 5 7 9 11 x x x x x 12 x - -- + --- - ---- + ------ - -------- + O(x ) 6 120 5040 362880 39916800

This certainly *looks* like the series for
sin(x), but let's see if MuPAD recognizes it as such.

>> sx:=series(sin(x),x,12): >> is(tx*cx=sx); TRUE >> type(tx*cx); PuiseuxThis means that the result of the series product is recognized by MuPAD as an object of type “Puiseux”; that is, a series possibly containing fractional powers.

MuPAD can also deal with polynomials.

>> p1:=x^8-3*x^5+11*x^4-x^2+17; 4 2 5 8 11 x - x - 3 x + x + 17 >> p2:=x^3-23*x^2-4*x+11; 3 2 x - 4 x - 23 x + 11 >> divide(p1,p2); 2 3 4 5 285641 x + 12337 x + 533 x + 23 x + x + 6613228, 2 23310861 x + 153111100 x - 72745491

The result of the last command consists of two terms: the quotient, and the remainder. MuPAD also has commands for extracting coefficients from polynomials, evaluating polynomials using Horner's algorithm, and lots more.

We shall first create a matrix domain:

>> M:=Dom::Matrix(); Dom::Matrix(Dom::ExpressionField(id, iszero))

The result returned here indicates that MuPAD expects that
the elements of matrices will be members of a field for which no
normalization is performed (the function **id** just
returns elements as given), and for which 0 is recognized as the
zero value.

Now we shall make all the commands in the library
**linalg** available to us:

>> export(linalg);

Now we shall create a few matrices and play with them. First, a matrix with given elements.

>> A:=M([[1,2,3],[-1,3,-2],[4,-5,2]]); +- -+ | 1, 2, 3 | | | | -1, 3, -2 | | | | 4, -5, 2 | +- -+We have entered the matrix elements as a list of lists (a list, in MuPAD, is delimited by square brackets).

Next, a matrix with elements randomly chosen to be between -9
and 9. We do this by applying the function returned by
**random** to each of the elements.

>> B:=M(3,3,func(random(-9..9)(),i,j)); +- -+ | -7, -5, 8 | | | | 3, -1, 7 | | | | 3, -5, 6 | +- -+

Clearly this approach can be used to generate any matrix
whose elements are functions of their row and column values. There
is a **randomMatrix** command in the
**linalg** library, but it requires the elements to
be members of a coefficient ring. For our purposes, it is as easy
to roll our own.

>> A*B; +- -+ | 8, -22, 40 | | | | 10, 12, 1 | | | | -37, -25, 9 | +- -+ >> det(A); -37 >> 1/A; +- -+ | 4/37, 19/37, 13/37 | | | | 6/37, 10/37, 1/37 | | | | 7/37, -13/37, -5/37 | +- -+As we have seen above, MuPAD supports operator overloading, which means that since

**A**is a matrix,

**1/A**is interpreted as the inverse of

**A**.

>> A^10; +- -+ | 19897010, -20429930, 22281963 | | | | -42711893, 43857348, -47862790 | | | | 64993856, -66730117, 72852811 | +- -+ >> b:=M(3,1,[7,9,-21]); +- -+ | 7 | | | | 9 | | | | -21 | +- -+Here the first two (optional) values give the number of rows and columns of the matrix, the matrix elements are then given in a single list. If the list isn't long enough, the remaining values will default to zero.

>> linearSolve(A,b); +- -+ | -2 | | | | 3 | | | | 1 | +- -+ >> AM:=A.b; +- -+ | 1, 2, 3, 7 | | | | -1, 3, -2, 9 | | | | 4, -5, 2, -21 | +- -+The . operator is concatenation. Again, this is an overloaded operator, as it will work for other data types as well.

>> gaussJordan(AM); +- -+ | 1, 0, 0, -2 | | | | 0, 1, 0, 3 | | | | 0, 0, 1, 1 | +- -+The

**linalg**library is very full-featured, and contains plenty of commands for operating on matrices and vectors: row and column operations; matrix factorization and decomposition; commands for dealing with matrix polynomials and eigensystems; and so on.

## Trending Topics

## Webinar

### Practical Task Scheduling Deployment

July 20, 2016 12:00 pm CDT

One of the best things about the UNIX environment (aside from being stable and efficient) is the vast array of software tools available to help you do your job. Traditionally, a UNIX tool does only one thing, but does that one thing very well. For example, grep is very easy to use and can search vast amounts of data quickly. The find tool can find a particular file or files based on all kinds of criteria. It's pretty easy to string these tools together to build even more powerful tools, such as a tool that finds all of the .log files in the /home directory and searches each one for a particular entry. This erector-set mentality allows UNIX system administrators to seem to always have the right tool for the job.

Cron traditionally has been considered another such a tool for job scheduling, but is it enough? This webinar considers that very question. The first part builds on a previous Geek Guide, Beyond Cron, and briefly describes how to know when it might be time to consider upgrading your job scheduling infrastructure. The second part presents an actual planning and implementation framework.

Join *Linux Journal*'s Mike Diehl and Pat Cameron of Help Systems.

Free to *Linux Journal* readers.

SUSE LLC's SUSE Manager | Jul 21, 2016 |

My +1 Sword of Productivity | Jul 20, 2016 |

Non-Linux FOSS: Caffeine! | Jul 19, 2016 |

Murat Yener and Onur Dundar's Expert Android Studio (Wrox) | Jul 18, 2016 |

Rogue Wave Software's Zend Server | Jul 14, 2016 |

Webinar: Practical Task Scheduling Deployment | Jul 14, 2016 |

- SUSE LLC's SUSE Manager
- My +1 Sword of Productivity
- Murat Yener and Onur Dundar's Expert Android Studio (Wrox)
- Managing Linux Using Puppet
- Non-Linux FOSS: Caffeine!
- Doing for User Space What We Did for Kernel Space
- SuperTuxKart 0.9.2 Released
- Google's SwiftShader Released
- Parsing an RSS News Feed with a Bash Script
- SourceClear Open

## Geek Guides

With all the industry talk about the benefits of Linux on Power and all the performance advantages offered by its open architecture, you may be considering a move in that direction. If you are thinking about analytics, big data and cloud computing, you would be right to evaluate Power. The idea of using commodity x86 hardware and replacing it every three years is an outdated cost model. It doesn’t consider the total cost of ownership, and it doesn’t consider the advantage of real processing power, high-availability and multithreading like a demon.

This ebook takes a look at some of the practical applications of the Linux on Power platform and ways you might bring all the performance power of this open architecture to bear for your organization. There are no smoke and mirrors here—just hard, cold, empirical evidence provided by independent sources. I also consider some innovative ways Linux on Power will be used in the future.

Get the Guide
## Comments

## Sellout

Mupad has been bought out by mathworks and all code is now under matlab (junk) licence.

any and all open source work is now dead.

## Thankyou for a well written a

Thankyou for a well written article. TeXmacs acts as an excellent interface to mupad. I assume that the TeXmacs screen display generated by TeX. The graphics is generated by javaview. The combination of TeXmacs and javaview greatly enhance the mupad experience.