# MuPAD

The default order of a power series is 6. This can be changed
either by changing the value of **ORDER** (analogous
to **DIGITS** above), or by including the order in
the **series** command. This last inclusion is
optional.

>> tx:=series(tan(x),x,12); 3 5 7 9 11 x 2 x 17 x 62 x 1382 x 12 x + -- + ---- + ----- + ----- + -------- + O(x ) 3 15 315 2835 155925 >> cx:=series(cos(x),x,12); 2 4 6 8 10 x x x x x 12 1 - -- + -- - --- + ----- - ------- + O(x ) 2 24 720 40320 3628800 >> tx*cx; 3 5 7 9 11 x x x x x 12 x - -- + --- - ---- + ------ - -------- + O(x ) 6 120 5040 362880 39916800

This certainly *looks* like the series for
sin(x), but let's see if MuPAD recognizes it as such.

>> sx:=series(sin(x),x,12): >> is(tx*cx=sx); TRUE >> type(tx*cx); PuiseuxThis means that the result of the series product is recognized by MuPAD as an object of type “Puiseux”; that is, a series possibly containing fractional powers.

MuPAD can also deal with polynomials.

>> p1:=x^8-3*x^5+11*x^4-x^2+17; 4 2 5 8 11 x - x - 3 x + x + 17 >> p2:=x^3-23*x^2-4*x+11; 3 2 x - 4 x - 23 x + 11 >> divide(p1,p2); 2 3 4 5 285641 x + 12337 x + 533 x + 23 x + x + 6613228, 2 23310861 x + 153111100 x - 72745491

The result of the last command consists of two terms: the quotient, and the remainder. MuPAD also has commands for extracting coefficients from polynomials, evaluating polynomials using Horner's algorithm, and lots more.

We shall first create a matrix domain:

>> M:=Dom::Matrix(); Dom::Matrix(Dom::ExpressionField(id, iszero))

The result returned here indicates that MuPAD expects that
the elements of matrices will be members of a field for which no
normalization is performed (the function **id** just
returns elements as given), and for which 0 is recognized as the
zero value.

Now we shall make all the commands in the library
**linalg** available to us:

>> export(linalg);

Now we shall create a few matrices and play with them. First, a matrix with given elements.

>> A:=M([[1,2,3],[-1,3,-2],[4,-5,2]]); +- -+ | 1, 2, 3 | | | | -1, 3, -2 | | | | 4, -5, 2 | +- -+We have entered the matrix elements as a list of lists (a list, in MuPAD, is delimited by square brackets).

Next, a matrix with elements randomly chosen to be between -9
and 9. We do this by applying the function returned by
**random** to each of the elements.

>> B:=M(3,3,func(random(-9..9)(),i,j)); +- -+ | -7, -5, 8 | | | | 3, -1, 7 | | | | 3, -5, 6 | +- -+

Clearly this approach can be used to generate any matrix
whose elements are functions of their row and column values. There
is a **randomMatrix** command in the
**linalg** library, but it requires the elements to
be members of a coefficient ring. For our purposes, it is as easy
to roll our own.

>> A*B; +- -+ | 8, -22, 40 | | | | 10, 12, 1 | | | | -37, -25, 9 | +- -+ >> det(A); -37 >> 1/A; +- -+ | 4/37, 19/37, 13/37 | | | | 6/37, 10/37, 1/37 | | | | 7/37, -13/37, -5/37 | +- -+As we have seen above, MuPAD supports operator overloading, which means that since

**A**is a matrix,

**1/A**is interpreted as the inverse of

**A**.

>> A^10; +- -+ | 19897010, -20429930, 22281963 | | | | -42711893, 43857348, -47862790 | | | | 64993856, -66730117, 72852811 | +- -+ >> b:=M(3,1,[7,9,-21]); +- -+ | 7 | | | | 9 | | | | -21 | +- -+Here the first two (optional) values give the number of rows and columns of the matrix, the matrix elements are then given in a single list. If the list isn't long enough, the remaining values will default to zero.

>> linearSolve(A,b); +- -+ | -2 | | | | 3 | | | | 1 | +- -+ >> AM:=A.b; +- -+ | 1, 2, 3, 7 | | | | -1, 3, -2, 9 | | | | 4, -5, 2, -21 | +- -+The . operator is concatenation. Again, this is an overloaded operator, as it will work for other data types as well.

>> gaussJordan(AM); +- -+ | 1, 0, 0, -2 | | | | 0, 1, 0, 3 | | | | 0, 0, 1, 1 | +- -+The

**linalg**library is very full-featured, and contains plenty of commands for operating on matrices and vectors: row and column operations; matrix factorization and decomposition; commands for dealing with matrix polynomials and eigensystems; and so on.

## Trending Topics

## Webinar

### Fast/Flexible Linux OS Recovery

On Demand Now

In this live one-hour webinar, learn how to enhance your existing backup strategies for complete disaster recovery preparedness using Storix System Backup Administrator (SBAdmin), a highly flexible full-system recovery solution for UNIX and Linux systems.

Join *Linux Journal*'s Shawn Powers and David Huffman, President/CEO, Storix, Inc.

Free to *Linux Journal* readers.

Working with Command Arguments | May 28, 2016 |

Secure Desktops with Qubes: Installation | May 28, 2016 |

CentOS 6.8 Released | May 27, 2016 |

Secure Desktops with Qubes: Introduction | May 27, 2016 |

Chris Birchall's Re-Engineering Legacy Software (Manning Publications) | May 26, 2016 |

ServersCheck's Thermal Imaging Camera Sensor | May 25, 2016 |

- Secure Desktops with Qubes: Introduction
- Secure Desktops with Qubes: Installation
- Download "Linux Management with Red Hat Satellite: Measuring Business Impact and ROI"
- Working with Command Arguments
- CentOS 6.8 Released
- The Italian Army Switches to LibreOffice
- Linux Mint 18
- ServersCheck's Thermal Imaging Camera Sensor
- Chris Birchall's Re-Engineering Legacy Software (Manning Publications)
- Petros Koutoupis' RapidDisk

## Geek Guides

Until recently, IBM’s Power Platform was looked upon as being the system that hosted IBM’s flavor of UNIX and proprietary operating system called IBM i. These servers often are found in medium-size businesses running ERP, CRM and financials for on-premise customers. By enabling the Power platform to run the Linux OS, IBM now has positioned Power to be the platform of choice for those already running Linux that are facing scalability issues, especially customers looking at analytics, big data or cloud computing.

￼Running Linux on IBM’s Power hardware offers some obvious benefits, including improved processing speed and memory bandwidth, inherent security, and simpler deployment and management. But if you look beyond the impressive architecture, you’ll also find an open ecosystem that has given rise to a strong, innovative community, as well as an inventory of system and network management applications that really help leverage the benefits offered by running Linux on Power.

Get the Guide
## Comments

## Sellout

Mupad has been bought out by mathworks and all code is now under matlab (junk) licence.

any and all open source work is now dead.

## Thankyou for a well written a

Thankyou for a well written article. TeXmacs acts as an excellent interface to mupad. I assume that the TeXmacs screen display generated by TeX. The graphics is generated by javaview. The combination of TeXmacs and javaview greatly enhance the mupad experience.