Getting Started with Heartbeat

Your first step toward high-availability bliss.

In every work environment with which I have been involved, certain servers absolutely always must be up and running for the business to keep functioning smoothly. These servers provide services that always need to be available—whether it be a database, DHCP, DNS, file, Web, firewall or mail server.

A cornerstone of any service that always needs be up with no downtime is being able to transfer the service from one system to another gracefully. The magic that makes this happen on Linux is a service called Heartbeat. Heartbeat is the main product of the High-Availability Linux Project.

Heartbeat is very flexible and powerful. In this article, I touch on only basic active/passive clusters with two members, where the active server is providing the services and the passive server is waiting to take over if necessary.

Installing Heartbeat

Debian, Fedora, Gentoo, Mandriva, Red Flag, SUSE, Ubuntu and others have prebuilt packages in their repositories. Check your distribution's main and supplemental repositories for a package named heartbeat-2.

After installing a prebuilt package, you may see a “Heartbeat failure” message. This is normal. After the Heartbeat package is installed, the package manager is trying to start up the Heartbeat service. However, the service does not have a valid configuration yet, so the service fails to start and prints the error message.

You can install Heartbeat manually too. To get the most recent stable version, compiling from source may be necessary. There are a few dependencies, so to prepare on my Ubuntu systems, I first run the following command:

sudo apt-get build-dep heartbeat-2

Check the Linux-HA Web site for the complete list of dependencies. With the dependencies out of the way, download the latest source tarball and untar it. Use the ConfigureMe script to compile and install Heartbeat. This script makes educated guesses from looking at your environment as to how best to configure and install Heartbeat. It also does everything with one command, like so:

sudo ./ConfigureMe install

With any luck, you'll walk away for a few minutes, and when you return, Heartbeat will be compiled and installed on every node in your cluster.

Configuring Heartbeat

Heartbeat has three main configuration files:

  • /etc/ha.d/authkeys

  • /etc/ha.d/

  • /etc/ha.d/haresources

The authkeys file must be owned by root and be chmod 600. The actual format of the authkeys file is very simple; it's only two lines. There is an auth directive with an associated method ID number, and there is a line that has the authentication method and the key that go with the ID number of the auth directive. There are three supported authentication methods: crc, md5 and sha1. Listing 1 shows an example. You can have more than one authentication method ID, but this is useful only when you are changing authentication methods or keys. Make the key long—it will improve security and you don't have to type in the key ever again.

The File

The next file to configure is the file—the main Heartbeat configuration file. The contents of this file should be the same on all nodes with a couple of exceptions.

Heartbeat ships with a detailed example file in the documentation directory that is well worth a look. Also, when creating your file, the order in which things appear matters. Don't move them around! Two different example files are shown in Listings 2 and 3.

The first thing you need to specify is the keepalive—the time between heartbeats in seconds. I generally like to have this set to one or two, but servers under heavy loads might not be able to send heartbeats in a timely manner. So, if you're seeing a lot of warnings about late heartbeats, try increasing the keepalive.

The deadtime is next. This is the time to wait without hearing from a cluster member before the surviving members of the array declare the problem host as being dead.

Next comes the warntime. This setting determines how long to wait before issuing a “late heartbeat” warning.

Sometimes, when all members of a cluster are booted at the same time, there is a significant length of time between when Heartbeat is started and before the network or serial interfaces are ready to send and receive heartbeats. The optional initdead directive takes care of this issue by setting an initial deadtime that applies only when Heartbeat is first started.

You can send heartbeats over serial or Ethernet links—either works fine. I like serial for two server clusters that are physically close together, but Ethernet works just as well. The configuration for serial ports is easy; simply specify the baud rate and then the serial device you are using. The serial device is one place where the files on each node may differ due to the serial port having different names on each host. If you don't know the tty to which your serial port is assigned, run the following command:

setserial -g /dev/ttyS*

If anything in the output says “UART: unknown”, that device is not a real serial port. If you have several serial ports, experiment to find out which is the correct one.

If you decide to use Ethernet, you have several choices of how to configure things. For simple two-server clusters, ucast (uni-cast) or bcast (broadcast) work well.

The format of the ucast line is:

ucast <device> <peer-ip-address>

Here is an example:

ucast eth1

If I am using a crossover cable to connect two hosts together, I just broadcast the heartbeat out of the appropriate interface. Here is an example bcast line:

bcast eth3

There is also a more complicated method called mcast. This method uses multicast to send out heartbeat messages. Check the Heartbeat documentation for full details.

Now that we have Heartbeat transportation all sorted out, we can define auto_failback. You can set auto_failback either to on or off. If set to on and the primary node fails, the secondary node will “failback” to its secondary standby state when the primary node returns. If set to off, when the primary node comes back, it will be the secondary.

It's a toss-up as to which one to use. My thinking is that so long as the servers are identical, if my primary node fails, then the secondary node becomes the primary, and when the prior primary comes back, it becomes the secondary. However, if my secondary server is not as powerful a machine as the primary, similar to how the spare tire in my car is not a “real” tire, I like the primary to become the primary again as soon as it comes back.

Moving on, when Heartbeat thinks a node is dead, that is just a best guess. The “dead” server may still be up. In some cases, if the “dead” server is still partially functional, the consequences are disastrous to the other node members. Sometimes, there's only one way to be sure whether a node is dead, and that is to kill it. This is where STONITH comes in.

STONITH stands for Shoot The Other Node In The Head. STONITH devices are commonly some sort of network power-control device. To see the full list of supported STONITH device types, use the stonith -L command, and use stonith -h to see how to configure them.

Next, in the file, you need to list your nodes. List each one on its own line, like so:

node deimos
node phobos

The name you use must match the output of uname -n.

The last entry in my example files is to turn on logging:

use_logd yes

There are many other options that can't be touched on here. Check the documentation for details.



Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.

2 Nodes configured, unknown expected votes

Anonymous's picture

Hi, this article is easy to configure heartbeat.

my monitoring command showing
Last updated: Wed Mar 17 18:44:42 2010
Stack: Heartbeat
Current DC: node1 (e9de9b67-cebf-4dd6-aeab-0276b49320ed) - partition with quorum
Version: 1.0.5-3840e6b5a305ccb803d29b468556739e75532d56
2 Nodes configured, unknown expected votes
0 Resources configured.

Online: [ node2 node1 ]

Why am getting "unknown expected votes"