The GPS Toolkit

Learn how GPS works and get a sharper fix on your position with this freely licensed library.

Explosive is perhaps the best term to describe the growth of the Global Positioning System (GPS) market in recent years. Contributing factors are numerous, and perhaps the most dramatic are economic: access to GPS is absolutely free and the cost of hardware continues to plummet. As a result, the GPS user can choose from a variety of devices that provide a position estimate. GPS has long been used, however, to explore topics beyond positioning; space weather, precise timing and continental drift are but three examples.

In order to use GPS for advanced topics or simply for improved positioning, the raw observations collected by the GPS receiver must be processed. In the past, the nuts and bolts of such processing have been left up to proprietary software. Now, a project called the GPS Toolkit, or GPSTk, is available under the LGPL to the Open Source and research communities. GPSTk is the by-product of GPS research conducted at the Applied Research Laboratories of the University of Texas at Austin (ARL:UT) since before the first satellite launched in 1978. It is the combined effort of many software engineers and scientists. Recently, the research staff at ARL:UT has decided to open source much of their basic GPS processing software as the GPSTk.

The Global Positioning System

The Global Positioning System actually is a US government satellite navigation system that provides a civilian signal. As of this writing, the signal is broadcast simultaneously by a constellation of 29 satellites, each with a 12-hour orbit. From any given position on the Earth, 8–12 satellites usually are visible at a time.

Figure 1. GPS Satellite Constellation Image from the Aerospace Corporation Web Site (www.aero.org/news/current/gps-orbit.html)

GPS in a Nutshell

Each satellite broadcasts spread spectrum signals at 1,575.42 and 1,227.6MHz, also known as L1 and L2, respectively. Currently, the civil signal is broadcast only on L1. The signal contains two components, a time code and a navigation message. By differencing the received time code with an internal time code, the receiver can determine the distance, or range, that the signal has traveled. This range observation is offset by errors in the (imperfect) receiver clock; therefore, it is called a pseudorange. The navigation message contains the satellite ephemeris, which is a numerical model of the satellite's orbit.

GPS receivers record, besides the pseudorange, a measurement called the carrier phase, or phase. The phase also is a range observation like the pseudorange is, except it has an unknown constant added to it, the phase ambiguity. It also is much smoother, having about 100 times less measurement noise than the pseudorange, which makes it useful for precise positioning. Because of the way it is measured, the phase is subject to random, sudden jumps. These discrete changes always come in multiples of the wavelength of the GPS signal and are called cycle slips.

The Position Solution

The standard solution for the user location requires a pseudorange measurement and an ephemeris for each satellite in view. At least four measurements are required, as there are four unknowns: three coordinates of position plus the receiver clock offset. The basic algorithm for the solution is described in the official GPS Interface Control Document, ICD-GPS-200. The position solution is corrupted due to two sources of error, errors in the observations and errors in the ephemeris.

Reducing Measurement Errors

The GPS signal travels through every layer of the Earth's atmosphere. Each layer affects the signal differently. The ionosphere, which is the high-altitude, electrically charged part of the atmosphere, introduces a delay, and therefore a range error, into the signal. The delay is frequency-dependent, so it can be computed directly if you have data on both the GPS frequencies. There also is a delay due to the troposphere, the lower part of the atmosphere. This delay also can be modeled and removed. Many other errors are associated with the GPS signal. Multipath reflections and relativistic effects are two examples.

More precise applications reduce the effect of error sources by a technique referred to as differential GPS (DGPS). By differencing measurements simultaneously collected by the user and a nearby reference receiver, the errors common to both receivers (most of them) are removed. The result of DGPS positioning is a position relative to the reference receiver; adding the reference position to the DGPS solution results in the absolute user position.

The alternative to DGPS is to model and remove errors explicitly. Creating new and robust models of phenomena that affect the GPS signal is an area of active research at ARL:UT and other laboratories. The positioning algorithm can be used to explore such models. Essentially, the basic approach is to turn the positioning algorithm inside out to look at the corrections themselves. For example, observations from a network of receivers can create a global map or model of the ionosphere.

______________________

Comments

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.

satellite position calculation

Asnawi Husin's picture

Could I using the gpstk calculate satellite position from rinex obs?

I've try this: $PRSolve -o tgrh2500.07o -n igs14435.sp3 --useCA --XPRN 14

but I don't know what is in the prs.log

Here I will plot the satellite position ( lat, lon ) for PRN 14.

Very Thanks

Asnawi

Indonesia

White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState