# Hacker's Delight

Boston, Pearson Education, Inc., 2003

ISBN: 0-201-91465-4

$39.99 US (hardcover)

*Hacker's Delight* is a treasure trove for
learning how to write efficient code. Over the course of 16
chapters and two appendices, fiendishly clever algorithms are
illustrated through numerous examples coded in C and with graphics,
along with the mathematical theory that supports the
techniques.

The introduction describes an instruction set and execution efficiency model on which the rest of the work is based. This provides a useful means for assessing computational efficiency on most modern computers. Then the stage is set for a chapter about many little issues surrounding bit-level representation. Next, a chapter each is provided for algorithms involving power-of-two boundaries and arithmetic bounds.

Efficient techniques for bit-level manipulations, such as counting the bits in a word, are described in the next three chapters, and the next four chapters form an étude about some key arithmetic operators and functions, including efficient multiplication and two kinds of integer division. A chapter follows covering algorithms for computing key elementary functions on integers. This includes logarithms, exponentials, plus square and cube roots.

In some specialized applications, alternative representations for the meaning of the bits can offer an advantage. Unusual number system bases and Gray codes are described in detail in two chapters. Gray codes, for instance, are useful for enumerating states in finite-state machines where only one bit changes per state transition.

One chapter provides an algorithmic glimpse on a variant of the Peano curve called the Hilbert curve, which is an interesting related space-filling curve. The Hilbert curve is amenable to recursive algorithms and has some bit-level computational advantages for representing spatial distances in coordinates. These algorithms find usefulness in image processing, rendering and compression.

A nice summary of IEEE Std 754-1985 floating-point arithmetic includes a procedure for comparing floating-point numbers using only integer operations, formulas for computing the probability density function for the number of leading digits in select ranges of representable numbers and a handy table of miscellaneous number values represented in hex for both single- and double-precision floating point.

The last chapter provides algorithms for computing prime numbers, using Willan's and Wormell's Formulas. Primes have uses in hashing algorithms and cryptography, among other things.

Two appendices provide 4-bit arithmetic tables and a more detailed description of Newton's Method for function approximation. The arithmetic tables are a handy way to envision the work done in algorithmic steps that are a fraction of a typical word length. The bibliography also is rich, listing many original papers for arithmetic, number theory and the techniques embellished within the book.

You can employ these techniques to attain mastery of some important inner-loop code, while enjoying the beauty of arithmetic algorithms. The author is a veteran of IBM, and his programming tricks are born of experience across four decades, from the IBM 704 through the PowerPC. The book is a wonderful collection of techniques for any programmer looking to improve efficiency for key algorithms in areas such as compiler development, databases, arithmetic for image and signal processing, and code libraries.

—Michael Baxter

email: mab@cruzio.com

## Trending Topics

## Webinar

### Practical Task Scheduling Deployment

July 20, 2016 12:00 pm CDT

One of the best things about the UNIX environment (aside from being stable and efficient) is the vast array of software tools available to help you do your job. Traditionally, a UNIX tool does only one thing, but does that one thing very well. For example, grep is very easy to use and can search vast amounts of data quickly. The find tool can find a particular file or files based on all kinds of criteria. It's pretty easy to string these tools together to build even more powerful tools, such as a tool that finds all of the .log files in the /home directory and searches each one for a particular entry. This erector-set mentality allows UNIX system administrators to seem to always have the right tool for the job.

Cron traditionally has been considered another such a tool for job scheduling, but is it enough? This webinar considers that very question. The first part builds on a previous Geek Guide, Beyond Cron, and briefly describes how to know when it might be time to consider upgrading your job scheduling infrastructure. The second part presents an actual planning and implementation framework.

Join *Linux Journal*'s Mike Diehl and Pat Cameron of Help Systems.

Free to *Linux Journal* readers.

SUSE LLC's SUSE Manager | Jul 21, 2016 |

My +1 Sword of Productivity | Jul 20, 2016 |

Non-Linux FOSS: Caffeine! | Jul 19, 2016 |

Murat Yener and Onur Dundar's Expert Android Studio (Wrox) | Jul 18, 2016 |

Rogue Wave Software's Zend Server | Jul 14, 2016 |

Webinar: Practical Task Scheduling Deployment | Jul 14, 2016 |

- Paranoid Penguin - Building a Secure Squid Web Proxy, Part IV
- SUSE LLC's SUSE Manager
- Google's SwiftShader Released
- Managing Linux Using Puppet
- My +1 Sword of Productivity
- Murat Yener and Onur Dundar's Expert Android Studio (Wrox)
- Non-Linux FOSS: Caffeine!
- SourceClear Open
- SuperTuxKart 0.9.2 Released
- Parsing an RSS News Feed with a Bash Script

## Geek Guides

With all the industry talk about the benefits of Linux on Power and all the performance advantages offered by its open architecture, you may be considering a move in that direction. If you are thinking about analytics, big data and cloud computing, you would be right to evaluate Power. The idea of using commodity x86 hardware and replacing it every three years is an outdated cost model. It doesn’t consider the total cost of ownership, and it doesn’t consider the advantage of real processing power, high-availability and multithreading like a demon.

This ebook takes a look at some of the practical applications of the Linux on Power platform and ways you might bring all the performance power of this open architecture to bear for your organization. There are no smoke and mirrors here—just hard, cold, empirical evidence provided by independent sources. I also consider some innovative ways Linux on Power will be used in the future.

Get the Guide