The Penguin and the Dinosaur

Think Linux is only for the PC? Think again.
Linux on the Mainframe

One obvious question is, “what good does this do?” Let's look at a few scenarios. Scott Courtney has addressed this issue wonderfully in his essay at LinuxPlanet (see Resources), which should be required reading if you're interested in L/390—it is a great deal more in-depth than my article.

UNIX administration and development skills are much more common and much cheaper than mainframe skills. Thus, it's going to be easier to find people to work on Linux on your mainframe than it would be to find OS/390, VSE or VM gurus.

What good is a mainframe? Mainframes traditionally had little in the way of CPU power (no longer true—you get plenty of raw CPU speed out of one), but have absolutely fantastic I/O capabilities. One of the main needs in a big web server farm or a big e-commerce server is I/O, of course.

Linux/390 presents an interesting migration path for organizations which are seeking to de-emphasize their mainframes but can't just decommission them, because it provides services simply unavailable in other environments. I've personally seen this scenario happen twice: once at Rice University and once at Princeton. Plans to shut the dinosaur down were announced, then retracted once it became clear that vital parts of the campus would grind to a halt, since there was simply no viable alternative to some of the mainframe services. Moving over to Linux for those things it can do provides a smoother and cheaper transition, without the need for additional hardware. Let's face it: if your organization is going to be moving away from OS/390 or VM, better they should move to Linux than to another OS. Since Linux running Samba is already a good back-office substitute for NT, you could provide Windows browsing services to your users without ever needing PC hardware, let alone an NT license.

Another exciting possibility is that VM licenses tend to be held by academic institutions. Imagine a third-year computer science course on operating systems or networking. Now imagine each student getting his very own Linux box with which to play. There's full OS source code, a full development environment and isolation from the production systems and other students. A fantastic course could be developed around a study of Linux internals in such an environment, and a medium-sized S/390 could support a class of 25 students, all recompiling the kernel at once, without breaking a sweat.

The commercial version of this scenario is the commercial web-hosting server. Traditionally, this means you get dedicated access to a machine in a rack space somewhere, physically managed by an ISP. We'll do the numbers a little later, but in short, if you're doing this on a large scale, the price of a mainframe and a VM license get dwarfed quickly by the price of a whole bunch of fast, rack-mounted PCs. Your labor cost also drops radically, as you don't have to physically set up yet another PC; you simply create one more virtual machine on your VM box, and give it its own copy of the installed system disks.

As an aside, it doesn't hurt to remember that the total cost of network ownership typically breaks down to less than one-quarter hardware, roughly one-third service and facilities, with the remainder the necessary staff to support it (IDC, 1996). Administration tasks are obviously greatly simplified when the entire network of Linux machines is contained within a single box.

It would also be quite possible to separate various services onto various virtual machines. Sendmail would get its own (virtual) Linux box, DNS another, Samba another. This would be good from both a security standpoint (an exploit on one machine compromises only one service) and a reliability standpoint. You can also split the various pieces of a multi-tier application (e.g., web front end, business rules processing engine in the middle and RDBMS on the back end) among separate virtual machines, and run your database on OS/390, if you prefer. The isolation would make both debugging and development somewhat easier. I know this is something we always laugh at the NT people for requiring, but there are three advantages to the Linux-on-a-virtual-machine method of service isolation:

  • Additional hardware cost is zero, as opposed to a couple thousand dollars per machine.

  • Additional software cost is zero, as opposed to the cost of an NT license per machine.

  • Actual resource utilization overhead is very low, since VM's virtual machines consume almost no resources unless they are actually running.

Price and Performance

Mainframes are expensive. There's no way around that fact. They're less expensive than they used to be, but they're certainly not $800 PCs. I'm not particularly au courant with IBM's pricing structure, but let's take a million dollars as a high-end price. A million dollars will buy you a lot of mainframe; you'd get a terrific IBM support contract with it and a VM license, as well as a backup solution. Most mainframe shops run OS/390, often in tandem with VM, but if your purpose is to run many Linux virtual machines, then you'd want VM and would have no use for OS/390 unless you wanted to do traditional mainframe computing too. I'm told a brand-new, top-end system with several terabytes of DASD is closer to $600,000 than a million, and much cheaper secondhand. However, for the purposes of argument, let's stick with a million as a nice round figure.

What do you get for that price? A machine which will run—I'm being extremely conservative here—1000 simultaneous Linux machines without a problem. You're talking $1000 per Linux box: not too different from the cost of a low-end rackmount Linux system, thus the price right there is a wash.

Obviously, it's a lot cheaper to rent space for a single S/390 and its associated disk arrays than it is to rent space for 1000 physical Linux boxes; even in one-unit packaging at 42 units/rack, you're still talking 24 racks. That's certainly more than even a big S/390 is going to take. Networking gets easier too; buy the 155MBps ATM options on your OSA cards, plug up to twelve ATM interfaces into your machine (if you need more scalability, options exist for you) and coordinate internal communication between your virtual machines via a virtual LAN. An internal, virtual LAN is much easier and cleaner to administer than a physical topology of switches and runs of Cat5 and fiber.

You can cut back on resource usage, too. If some of your machines will have identical file systems (it's fairly common, for example, in the UNIX world, to mount /usr read-only and have symlinks to what needs to be writable), then you can maintain a single disk with the shared file system and mount it from each of the virtual machines. It's just like sharing file systems over NFS, only without the ugliness of NFS. This, incidentally, was what David Boyes did when running his 41,400 machines: all shared /usr and /bin; with a little more trickery, /lib could be shared too. Furthermore, there's no need to specify much—or indeed, any—swap for your Linux machines; VM knows all about memory management and does it very effectively. Give each of your Linux machines a bunch of virtual memory, and let the VM hypervisor worry about paging it in and out.

Now let's look at reliability. We'll assume one of these $1000 machines has a MTBF of 1000 days. That's probably on the high side for a thousand-dollar machine, if you're pushing it fairly hard. At $1000, you're not getting RAID, your disks are probably IDE, and even redundant power supplies are unlikely. If you have a thousand of these boxes in a room, the chance you will get through a day with none of them failing is 1-(1/1000)<+>1000<+>, or about 37%. In other words, two days out of three, you're going to have to replace something.

Of course, if the mainframe fails, all your machines fail. However, one of the things you're paying for with your million dollars is rock-solid reliability: a System/390 is built with enough redundancy that if something fails, the rest of the system stays up and can be hot-swapped. This isn't just disks: on multiprocessor machines, you can replace a failed processor without bringing down the system. I giggled when I saw Microsoft trumpeting it had achieved 99.5% up time with NT. Thus, under exceptionally good circumstances, properly administered and maintained, NT is down, on average, a little less than an hour a week. I was a VM systems programmer from 1992 to 1994; during that time, we typically had under an hour of scheduled down time a year. Unscheduled down time was zero.

Backups cease to be an issue; because VM is managing all the disks for the virtual machines, all their data is backed up with the VM backup. The same with data integrity; for that kind of cash, you get well-implemented hot-swappable RAID, in which the complexity is never even visible to the Linux machines, because they see their disk space just as devices presented to them by VM. Basically, no matter how many virtual machines you have, you have only one actual machine to protect, so the cost of doing so remains constant, rather than scaling with the number of machines.

Furthermore, VM has an extremely efficient cache. Frequently accessed disk blocks will be held in the cache and requests never go to the drives at all. This is a huge win if you either share disks among machines, or if you're running a server farm.

There's also a low end in the mainframe market. The P/390 is a PCI card containing a chip with the S/390 instruction set on it. It is sold in combination with another PCI card which provides a channel interface (so you can drive your real S/390 peripherals), a PC running OS/2 and some driver software; you run VM, VSE, OS/390 or Linux on the card. The prices for the PC Server System/390 are under $10,000 now. There's also the slightly more expensive R/390, which sits in an AIX box. Ten thousand dollars is well within the budget of a smallish software development company. Of course, these boxes won't support a thousand simultaneous machines, but they'd do fifty fairly comfortably (they support 130 or so simultaneous CMS users). In fact, I'm planning to use just such a system to play with a virtual Beowulf cluster, among other things, and maybe experiment with MOSIX, too.

There's also a lot of middle ground between these two ends. In short, it's not much more expensive, from a purely hardware point of view, to put N virtual Linux boxes on a mainframe than it is to simply buy N boxes, and it becomes a good deal cheaper as N increases.

______________________

Webinar
One Click, Universal Protection: Implementing Centralized Security Policies on Linux Systems

As Linux continues to play an ever increasing role in corporate data centers and institutions, ensuring the integrity and protection of these systems must be a priority. With 60% of the world's websites and an increasing share of organization's mission-critical workloads running on Linux, failing to stop malware and other advanced threats on Linux can increasingly impact an organization's reputation and bottom line.

Learn More

Sponsored by Bit9

Webinar
Linux Backup and Recovery Webinar

Most companies incorporate backup procedures for critical data, which can be restored quickly if a loss occurs. However, fewer companies are prepared for catastrophic system failures, in which they lose all data, the entire operating system, applications, settings, patches and more, reducing their system(s) to “bare metal.” After all, before data can be restored to a system, there must be a system to restore it to.

In this one hour webinar, learn how to enhance your existing backup strategies for better disaster recovery preparedness using Storix System Backup Administrator (SBAdmin), a highly flexible bare-metal recovery solution for UNIX and Linux systems.

Learn More

Sponsored by Storix