Using the Red Hat Package Manager

This article will introduce you to RPM by showing you the most common features, namely how to query, install, upgrade and remove packages.

One of the mundane yet necessary duties a system administrator faces is software management. Applications and patches come and go. After months or years of adding, upgrading and removing software applications, it's often hard to tell just what is on a system: the version of a software package and its dependent applications. Often, old files wind up lying around, because no one's quite sure anymore who owns them. Worse, you may install a new software package, only to find it has overwritten a crucial file from a currently installed package.

The Red Hat Package Manager (RPM) was designed to eliminate these problems. With RPM, software is managed in discrete “packages”--a collection of the files that make up the software, and instructions for adding, removing and upgrading those files. RPM also makes sure you never lose configuration files by backing up existing files before overwriting. RPM also tracks which version of an application is currently installed on your system. While named after Red Hat, the RPM system is also a part of Caldera OpenLinux, SuSE and all distributions based on Red Hat, such as Mandrake.

What Is a Package?

In the generic sense, a package is a container. It includes the files needed to accomplish a certain task, such as the binaries, configuration and documentation files in a software application. It also includes instructions on how and where these files should be installed and how the installation should be accomplished. A package also includes instructions on how to uninstall itself.

RPM packages are often identified by file name, which usually consists of the package name, version, release and the architecture for which it was built. For example, the package penguin-3.26.i386.rpm indicates this is the (fictional) Penguin Utilities package, version 3, release 26. i386 indicates it has been compiled for the Intel architecture. Note that although this is the conventional method of naming RPM packages, the actual package name, version and architecture information are read from the contents of the file by RPM, not the file name. You could rename the file blag.rpm, but it would still install as penguin-3.26.i386.rpm.

What Is RPM?

At the heart of RPM is the RPM database. This tracks where each file in a package is located, its version and much more. The RPM also maintains an MD5 checksum of each file. Checksums are used to determine whether a file has been modified, which comes in handy if you need to verify the integrity of one or more packages. The RPM database makes adding, removing and upgrading packages easy, because RPM knows which files to handle and where to put them. RPM also takes care of conflicts between packages. For example, if package X, which has already been installed, has a configuration file called /etc/someconfig and you attempt to install a new package Y, which wants to install the same file, RPM will manage this conflict by backing up your previous configuration file before the new file is written.

The workhorse of the RPM system is the program rpm. rpm is the “driver” responsible for maintaining the RPM databases. Of rpm's 10 modes of operation, I will cover the four most common: query, install, upgrade and remove.

Query Mode

One of the strengths of RPM is that, ideally, it accounts for every system or application file on your system. Using RPM's query mode, you can determine which packages are installed on your system or which files belong to a particular package. This can be a big help if you want to locate a file that belongs to a certain package. Query mode can also be used to identify which files are in an RPM file before you install it. This lets you see the files that are going to be installed on your system before they are actually written.

The -q switch is used to query packages. By itself, -q will give you the version of a specified package. If you want to see which version of the tin newsreader you have on your system, you would issue the following command:

# rpm -q tin
tin-1.22-12

If you want to see which installed package owns a file, use the -f modifier. Here, we want to see which package owns /etc/passwd.

# rpm -q -f /etc/passwd
setup-1.9.2-1
Likewise, if you want to generate a list of files belonging to a certain package, use the -l modifier:
# rpm -q -l tin
/usr/bin/rtin
/usr/bin/tin
/usr/doc/tin-1.22
/usr/doc/tin-1.22/CHANGES
/usr/doc/tin-1.22/FTP
/usr/doc/tin-1.22/HACKERS
/usr/doc/tin-1.22/INSTALL
/usr/doc/tin-1.22/INSTALL.NNTP
/usr/doc/tin-1.22/MANIFEST
/usr/doc/tin-1.22/README
/usr/doc/tin-1.22/TODO
/usr/man/man1/tin.1
One of the most common modifiers to -q is -a, query all packages on your system. This system has 350 packages installed, but here's a truncated output:
# rpm -q -a
setup-1.9.2-1
filesystem-1.3.2-3
basesystem-4.9-3
ldconfig-1.9.5-8
...
code_crusader-1.1.0-1
lyx-0.11.53-1
xforms-0.86-1
wine-981211-1
Listing 1

For even more information about a package, use the -i (information) modifier:

# rpm -q -i passwd

Output is shown in Listing 1. Here's what some of the most important entries mean:

  • Name: the name of the package

  • Version: the version of the package

  • Release: the number of times this package has been released using the same version of the software

  • Install date: when this package was installed on your system

  • Group: your RPM database is divided into groups, which describe the functionality of the software. Each time you install a package, it will be grouped accordingly.

  • Size: the total size in bytes of all the files in the package

  • License: the license of the original software

Typically, the file name will indicate what's inside the package, but not always. You may receive a package simply named glibc.rpm, which isn't very helpful. You can use the -p modifier to find out which version and release this RPM contains, then perhaps rename it appropriately.
# rpm -q -p glibc.rpm
glibc-2.0.7-29

______________________

Webinar
One Click, Universal Protection: Implementing Centralized Security Policies on Linux Systems

As Linux continues to play an ever increasing role in corporate data centers and institutions, ensuring the integrity and protection of these systems must be a priority. With 60% of the world's websites and an increasing share of organization's mission-critical workloads running on Linux, failing to stop malware and other advanced threats on Linux can increasingly impact an organization's reputation and bottom line.

Learn More

Sponsored by Bit9

Webinar
Linux Backup and Recovery Webinar

Most companies incorporate backup procedures for critical data, which can be restored quickly if a loss occurs. However, fewer companies are prepared for catastrophic system failures, in which they lose all data, the entire operating system, applications, settings, patches and more, reducing their system(s) to “bare metal.” After all, before data can be restored to a system, there must be a system to restore it to.

In this one hour webinar, learn how to enhance your existing backup strategies for better disaster recovery preparedness using Storix System Backup Administrator (SBAdmin), a highly flexible bare-metal recovery solution for UNIX and Linux systems.

Learn More

Sponsored by Storix