University of Toronto WearComp Linux Project

Dr. Mann describes his WearComp (“Wearable Computer”) invention and how it has evolved into the same kind of philosophical basis for self determination and mastery over one's own destiny that is characteristic of the Linux operating system that currently runs on WearComp.
Future Directions

Much work remains to be done in development of this project. Currently, I teach Electrical and Computer Engineering (ECE1766) at the University of Toronto. To the best of my knowledge, this is the world's first course on how to be a “cyborg” entity. Students learn not only by doing, but by being. I call this form of learning existential learning. Each student creates a “reconfigured self”--a new form of personal space. Thus, students learn about the concept of personal empowerment from a first-person perspective through personal involvement.

We are writing new protocols for the altered perception of reality (mediated reality) that the WearComp provides. One example is picture-transfer protocol (PTP), in which packets of variable length are transmitted. Each packet is a JPEG compressed picture. Because of image compression, the amount of data varies depending on image content, hence the packet length depends on image content.

The reason for one packet per picture is that pictures are taken 60 times per second, which is much faster than they can be sent. Thus, whenever there is a lost packet and a re-transmission is needed, a newer picture will most likely be available to be sent instead. With PTP, retransmissions are always current.

Next month I will describe a mathematical (computational) framework called “Mediated Reality”, in which we will see that picture data is of greatest value only if it is up-to-date. Old pictures are of less value when trying to construct a computer-mediated reality. Thus, packet resends should always be of the most current image; hence the design of PTP is based on variable packet lengths, in which the packet length is the length of a picture.

Further information about the WearComp Linux project may be found in http://wearcam.org/ece1766.html.

Resources

Thanks to Kodak and Digital Equipment Corporation (DEC) for assistance with the Personal Imaging and Humanistic Intelligence projects.

Steve Mann, inventor of WearComp (wearable computer) and WearCam (eye-tap camera and reality mediator), is a faculty member at the University of Toronto, Department of Electrical and Computer Engineering. Dr. Mann has been working on his WearComp invention for more than 20 years, dating back to his high school days in the 1970s. He brought his inventions and ideas to the Massachusetts Institute of Technology in 1991, founding what later became the MIT Wearable Computing Project, and received his Ph.D. from MIT in 1997 in this new field he had established. Anyone interested in joining or helping out with the “community of cyborgs” project or the WearComp Linux project may contact the author by e-mail at mann@eecg.toronto.edu.

______________________

White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState