University of Toronto WearComp Linux Project

Dr. Mann describes his WearComp (“Wearable Computer”) invention and how it has evolved into the same kind of philosophical basis for self determination and mastery over one's own destiny that is characteristic of the Linux operating system that currently runs on WearComp.
Definition of WearComp

A wearable computer is a computer that is subsumed into the personal space of the user, controlled by the user and has both operational and interactional constancy.

Most notably, it is a device that is always with the user and into which the user can always enter commands and execute a set of entered commands while walking around or doing other activities.

The most salient aspect of computers in general (whether wearable or not) is their reconfigurability and their generality, e.g., their function can be made to vary widely, depending on the instructions provided for program execution. This is true for the wearable computer (WearComp). For example, the wearable computer is more than just a wristwatch or regular eyeglasses; it has the full functionality of a computer system and, in addition, is inextricably intertwined with the wearer.

This is what sets the wearable computer apart from other wearable devices such as wristwatches, regular eyeglasses, wearable radios, etc. Unlike these other wearable devices that are not programmable (reconfigurable), the wearable computer is as reconfigurable as the familiar desktop or mainframe computer.

The formal definition of wearable computing defined in terms of its three basic modes of operation and its six fundamental attributes is provided elsewhere in the literature. (See Resources 7.)

WearComp, as Universal Interface to Reality

Such a computational framework allows one to subsume all of the personal electronics devices one might normally carry, such as cellular phone, pager, wrist watch, heart monitor, camera and video camera into a single device. Obviously, since it is a fully featured computer, it is possible to respond to e-mail, plan events on a calendar, type a report, etc., while walking, standing in line at the bank or anywhere. In this way, WearComp anticipated the later arrival of the so-called “laptop computer”, but has advantages over the laptop in the sense that it can be used while walking around doing other things. However, the real power of WearComp is in its ability to serve as a basis for personal imaging and humanistic intelligence.

Figure 3. Another Example of WearComp

Personal Safety Device

WearComp not only subsumes the function of the laptop computer, but goes beyond it. Another area in which WearComp provides a truly new form of user interface not found on laptops and PDAs (personal digital assistants) is in its constancy of user interface and operation. This characteristic may become most evident in its use as a personal security camera. Imagine, perhaps as you walk down some quiet street at night, an assailant appears, demanding cash from you. You would not likely have the time or opportunity to pull out a camcorder to record the experience, but since the eyeglasses are worn constantly, you would have a video record of the experience to aid investigation.

Camera of the Future

Less extreme examples of WearComp as a new user-interface include the ability to construct a personal documentary video without conscious thought or effort. For example, in a fully mediated reality, all light entering the eyes, in effect, passes through the computer and may therefore be recorded (and possibly transmitted to remote locations). Wearable Wireless Webcam (see Resources 8) is an example of a personal documentary video recorded using a reality mediator.

In the future, we may very well have the capability to capture and recall our own personal experiences and to have photo albums generated automatically for us. We will never miss baby's first steps, because we will have a retroactive record feature that lets us, for example, “begin recording from 5 minutes ago”. Photo albums, in addition to being generated automatically, may also be exhibited while they are being generated. Rather than sending postcards to friends and relatives or showing them an album after you come back from vacation, you may just put on your sunglasses and have the album sent to them automatically, as was done with the Wearable Wireless Webcam experiment in which video was transmitted and still images automatically selected from the video.

Personal Intelligence Arms Race

While there will no doubt be more environmental intelligence than personal intelligence, there is at least the hope that there might be an end to the drastic imbalance between the two. The individual making a purchase in a department store may have several cameras pointing at him to make sure that if he removed merchandise without payment, there would be evidence of the theft. However, in the future, he will have a means of collecting evidence that he did pay for the item, or a recorded statement from a clerk about the refund policy. More extreme examples such as the case of Latasha Harlins, a customer falsely accused of shoplifting and fatally shot in the back by a shopkeeper as she attempted to walk out of the shop, come to mind.

In this sense, the camera-based reality mediator becomes an equalizer much like the Colt 45 in the “Wild West”. In the WearCam case, it is simply a matter of mutually assured accountability.

______________________

White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState