Hunting Hurricanes

The authors tell us about hunting hurricane using the Scanning Radar Altimeter based on the Linux system and analyzing the data with Yorick.
Bonnie

Figure 14. Flight Track during Bonnie's Landfall

We flew two missions in hurricane Bonnie: the first on August 24 and the second during landfall on August 26, 1998. During our first transit flight from Tampa to the storm, we were able to isolate and correct the tracker bug and everything started working better than expected. Soon after leaving the east coast of Florida, our topographic display of the sea came alive for the first time, showing real sea state. Ocean waves as high as 63 feet were observed in the northeast quadrant of the hurricane on the 24th. Figure 14 shows our August 26 flight track during landfall overlaid on the aircraft weather radar image and a contour plot of the wind field data. The base image includes the weather radar, the wind field and the coastline and was provided by the Hurricane Research Division (HRD) of the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) in Miami. We produced this overlay using Yorick.

In addition to hurricane Bonnie, we also flew in Earl and Georges.

Conclusion

Thanks to the reliability of Linux and all of the off-the-shelf real-time data processing programs available in that domain, we were able to put together a state-of-the-art data system on a very tight schedule with a great variety of real-time displays. The displays proved to be of great value both in troubleshooting during development and in real-time geophysical assessment and interpretation during data acquisition. As a result, we were able to document for the first time the spatial variation of the wave field in the vicinity of a hurricane and the spatial and temporal variation of the storm surge associated with hurricanes on landfall.

Resources

C. Wayne Wright (wright@osb.wff.nasa.gov) is a Data Systems Engineer for the NASA Goddard Space Flight Center, Laboratory for Hydrospheric Processes, Observational Sciences Branch, Wallops Island, VA. He is a 1984 graduate of the University of Maryland with a degree in Computer Science. His interests include aviation, amateur radio and computers. Away from work, he and his wife Vicki operate a Linux web server.

Edward J. Walsh (walsh@osb.wff.nasa.gov) is a scientist for the NASA Goddard Space Flight Center, Laboratory for Hydrospheric Processes, Observational Sciences Branch, Wallops Island, VA. He received B.S. and Ph.D. degrees in Electrical Engineering from Northeastern University in 1963 and 1967, respectively. Ed is presently on assignment for NASA at the NOAA Environmental Technology Laboratory in Boulder, Colorado.

______________________

White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState