POSIX Thread Libraries

The authors have studied five libraries that can be used for multi-thread applications and herein present the results.
Performance Results

All results were obtained by running the benchmarks on a PC with a dual Pentium Pro Processor. The Pentium Pro Processor is a 32-bit processor with the RISC technology. This processor uses dynamic execution, a combination of improved branch prediction, speculative execution and data flow analysis. The clock speed of the computer was 200MHz, and it was equipped with 64MB of memory and a 2GB hard disk.

The tests were all performed ten times and the mean of the measurements was taken as the result for the test. This result is an indication of the performance of the function being evaluated. We have considered average values, because they are more representative of the performance the user can obtain from the machine. Other authors consider minimum values, because they are supposed to be free from the influence of the operating system and other users. The tests were taken with only one user on the machine. All tests compared the performance obtained for Solaris threads, Provenzano threads (PT), FSU_Pthreads (FSUT), PC threads (PCT), CLthreads (CLT) and LinuxThreads (LT). Threads created in Solaris are permanently bound to an LWP to take full advantage of the hardware platform used.

The numbers presented in Figure 5 are the results of the thread-management measurements. All values are given in microseconds, except for granularity of parallelism where values are given in number of iterations. In general, it can be seen that user-level packages are more efficient than kernel-level packages and Solaris threads, since the threads are created on top of the operating system and are invisible to the kernel; however, these libraries are not useful for multi-threaded applications running on multiprocessor systems. This is true for Provenzano threads and FSU_Pthreads, although PC threads present more time-consuming results. Results for granularity of parallelism are shown for kernel-level libraries (Solaris, CLthreads and LinuxThreads); user-level libraries cannot execute multiple threads in more than one processor. Figure 5 shows how Solaris can take better advantage of multiprocessor architecture. Comparing thread execution and granularity of parallelism results, we can see that context switching is more time-consuming for Linux threading (CLthreads and LinuxThreads) than for Solaris threading. LinuxThreads can take better advantage of multiprocessor systems than CLthreads can.

Figure 5. Thread Management Results

Figure 6 depicts the results of synchronization management measurements. PC threads (PCT) is less efficient, although it is a user-level library. Results show that Provenzano threads is the best user-level library evaluated, and LinuxThreads is a good kernel-level library for use in Linux machines.

Figure 6. Synchronization Management Results


Our objective was to evaluate and compare the performance of five POSIX thread libraries available for Linux and how they compared with other operating systems, such as Solaris. Results were concentrated in thread-management and synchronization-management measurements. Primary results show Provenzano threads to be the best user-level library, and LinuxThreads is a good kernel-level library. Moreover, results show that context switching is more time-consuming for Linux threading (CLthreads and LinuxThreads) than for Solaris threading.


Felix Garcia is an associate professor in the Department of Computer Architecture at the Polytechnical University of Madrid, Spain. His research interests include operating systems, file systems and parallel and distributed systems.

Javier Fernandez is a student member in the Department of Computer Architecture at the Polytechnical University of Madrid, Spain. His research interest is operating systems. He received his MS in Computer Science in 1998.



Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.

Re: POSIX Thread Libraries

Anonymous's picture

The authors have summarized a fair chunk of discussion and used at least 1 picture from a standard OS text book -- I would have thought they should have at least cited it as a reference.

One Click, Universal Protection: Implementing Centralized Security Policies on Linux Systems

As Linux continues to play an ever increasing role in corporate data centers and institutions, ensuring the integrity and protection of these systems must be a priority. With 60% of the world's websites and an increasing share of organization's mission-critical workloads running on Linux, failing to stop malware and other advanced threats on Linux can increasingly impact an organization's reputation and bottom line.

Learn More

Sponsored by Bit9

Linux Backup and Recovery Webinar

Most companies incorporate backup procedures for critical data, which can be restored quickly if a loss occurs. However, fewer companies are prepared for catastrophic system failures, in which they lose all data, the entire operating system, applications, settings, patches and more, reducing their system(s) to “bare metal.” After all, before data can be restored to a system, there must be a system to restore it to.

In this one hour webinar, learn how to enhance your existing backup strategies for better disaster recovery preparedness using Storix System Backup Administrator (SBAdmin), a highly flexible bare-metal recovery solution for UNIX and Linux systems.

Learn More

Sponsored by Storix