# MuPAD

We have loosely tossed about the term “domain”. We shall now look at this in a bit (but not much) more detail. Domains are fundamental to the way in which MuPAD works, and we need to have a basic understanding of them in order to use MuPAD effectively.

A domain in MuPAD is either an algebraic structure (such as finite field or permutation group) or a data type (such as Matrix, Polynomial or Fraction), for which overloaded operators or functions defined on that domain always return results in the domain (or the result FAIL if no result exists).

To give some examples, suppose we investigate matrices over the integers modulo 29. Since 29 is prime, these integers form a Galois field, and so the matrices should respond to all standard arithmetic operations.

First the definition:

>> M29:=Dom::Matrix(Dom::IntegerMod(29)); Dom::Matrix(Dom::IntegerMod(29))

We have two domains being used here:
**Dom::Matrix**, which creates a matrix domain, and
**Dom::IntegerMod(29)**, which creates the field of
integers modulo 29.

>> A:=M29([[100,200,-30],[47,-97,130],[13,33,-1001]]); +- -+ | 13 mod 29, 26 mod 29, 28 mod 29 | | | | 18 mod 29, 19 mod 29, 14 mod 29 | | | | 13 mod 29, 4 mod 29, 14 mod 29 | +- -+Notice that the result returned by MuPAD is automatically normalized so that the matrix elements are in the required field. If we enter values which can't be normalized (say, decimal fractions), MuPAD will return an error message.

>> 1/A; +- -+ | 3 mod 29, 8 mod 29, 15 mod 29 | | | | 28 mod 29, 9 mod 29, 22 mod 29 | | | | 12 mod 29, 19 mod 29, 13 mod 29 | +- -+Here the inverse operator returns a suitable result. Let's check this.

>> %*A; +- -+ | 1 mod 29, 0 mod 29, 0 mod 29 | | | | 0 mod 29, 1 mod 29, 0 mod 29 | | | | 0 mod 29, 0 mod 29, 1 mod 29 | +- -+This is the identity for our particular matrix ring. Now we can try a few other matrix operations.

>> linalg::det(A); 12 mod 29 >> linalg::gaussElim(A); +- -+ | 13 mod 29, 26 mod 29, 28 mod 29 | | | | 0 mod 29, 12 mod 29, 2 mod 29 | | | | 0 mod 29, 0 mod 29, 9 mod 29 | +- -+ >> linalg::gaussJordan(A); +- -+ | 1 mod 29, 0 mod 29, 0 mod 29 | | | | 0 mod 29, 1 mod 29, 0 mod 29 | | | | 0 mod 29, 0 mod 29, 1 mod 29 | +- -+ >> A^10; +- -+ | 22 mod 29, 10 mod 29, 3 mod 29 | | | | 3 mod 29, 21 mod 29, 16 mod 29 | | | | 4 mod 29, 18 mod 29, 5 mod 29 | +- -+ >> exp(A); FAILThe matrix exponential exp(X) is defined as 1 + X + (X^2)/2 + (X^3)/6 + (X^4)/24 + . . . + (X^n)/n! + . . . As you might expect, this is not defined for matrices over our field. For another example, consider polynomials over the integers modulo 2. The definition is similar to the matrix definition above.

>> PK:=Dom::Polynomial(Dom::IntegerMod(2)); Dom::Polynomial(Dom::IntegerMod(2))Now we'll create a polynomial in this domain.

>> p1:=PK(x^17+1); 17 x + 1For good measure, we'll create a second polynomial which looks the same, but is not in our domain.

>> p2:=x^17+1; 17 x + 1Even though they look the same on the screen, MuPAD knows all about them; the type command will tell us.

>> type(p1); Dom::Polynomial(Dom::IntegerMod(2)) >> type(p2); "_plus"(The result of this last command is that

**p2**is an object formed by adding things together.)

>> Factor(p1); 3 4 5 8 2 4 6 7 8 1 (x + 1) (x + x + x + x + 1) (x + x + x + x + x + x + 1) >> Factor(p2); 2 3 4 5 6 7 8 9 10 11 12 13 (x + 1) (x - x - x + x - x + x - x + x - x + x - x + x - x 14 15 16 + x - x + x + 1)The

**domains**package is part of MuPAD which is very much in a state of constant revision and enhancement. For example, at present, it is not possible to perform polynomial division in a polynomial domain.

## Trending Topics

## Webinar

### Fast/Flexible Linux OS Recovery

On Demand Now

In this live one-hour webinar, learn how to enhance your existing backup strategies for complete disaster recovery preparedness using Storix System Backup Administrator (SBAdmin), a highly flexible full-system recovery solution for UNIX and Linux systems.

Join *Linux Journal*'s Shawn Powers and David Huffman, President/CEO, Storix, Inc.

Free to *Linux Journal* readers.

BitTorrent Inc.'s Sync | Apr 29, 2016 |

The Humble Hacker? | Apr 28, 2016 |

EnterpriseDB's EDB Postgres Advanced Server and EDB Postgres Enterprise Manager | Apr 27, 2016 |

ACI Worldwide's UP Retail Payments | Apr 26, 2016 |

The Death of RoboVM | Apr 25, 2016 |

Varnish Software's Hitch | Apr 22, 2016 |

- Server Hardening
- BitTorrent Inc.'s Sync
- Download "Linux Management with Red Hat Satellite: Measuring Business Impact and ROI"
- New Container Image Standard Promises More Portable Apps
- The Humble Hacker?
- The Death of RoboVM
- The US Government and Open-Source Software
- Open-Source Project Secretly Funded by CIA
- EnterpriseDB's EDB Postgres Advanced Server and EDB Postgres Enterprise Manager
- AdaCore's SPARK Pro

## Geek Guides

In modern computer systems, privacy and security are mandatory. However, connections from the outside over public networks automatically imply risks. One easily available solution to avoid eavesdroppers’ attempts is SSH. But, its wide adoption during the past 21 years has made it a target for attackers, so hardening your system properly is a must.

Additionally, in highly regulated markets, you must comply with specific operational requirements, proving that you conform to standards and even that you have included new mandatory authentication methods, such as two-factor authentication. In this ebook, I discuss SSH and how to configure and manage it to guarantee that your network is safe, your data is secure and that you comply with relevant regulations.

Get the Guide
## Comments

## Sellout

Mupad has been bought out by mathworks and all code is now under matlab (junk) licence.

any and all open source work is now dead.

## Thankyou for a well written a

Thankyou for a well written article. TeXmacs acts as an excellent interface to mupad. I assume that the TeXmacs screen display generated by TeX. The graphics is generated by javaview. The combination of TeXmacs and javaview greatly enhance the mupad experience.