# MuPAD

We have loosely tossed about the term “domain”. We shall now look at this in a bit (but not much) more detail. Domains are fundamental to the way in which MuPAD works, and we need to have a basic understanding of them in order to use MuPAD effectively.

A domain in MuPAD is either an algebraic structure (such as finite field or permutation group) or a data type (such as Matrix, Polynomial or Fraction), for which overloaded operators or functions defined on that domain always return results in the domain (or the result FAIL if no result exists).

To give some examples, suppose we investigate matrices over the integers modulo 29. Since 29 is prime, these integers form a Galois field, and so the matrices should respond to all standard arithmetic operations.

First the definition:

>> M29:=Dom::Matrix(Dom::IntegerMod(29)); Dom::Matrix(Dom::IntegerMod(29))

We have two domains being used here:
**Dom::Matrix**, which creates a matrix domain, and
**Dom::IntegerMod(29)**, which creates the field of
integers modulo 29.

>> A:=M29([[100,200,-30],[47,-97,130],[13,33,-1001]]); +- -+ | 13 mod 29, 26 mod 29, 28 mod 29 | | | | 18 mod 29, 19 mod 29, 14 mod 29 | | | | 13 mod 29, 4 mod 29, 14 mod 29 | +- -+Notice that the result returned by MuPAD is automatically normalized so that the matrix elements are in the required field. If we enter values which can't be normalized (say, decimal fractions), MuPAD will return an error message.

>> 1/A; +- -+ | 3 mod 29, 8 mod 29, 15 mod 29 | | | | 28 mod 29, 9 mod 29, 22 mod 29 | | | | 12 mod 29, 19 mod 29, 13 mod 29 | +- -+Here the inverse operator returns a suitable result. Let's check this.

>> %*A; +- -+ | 1 mod 29, 0 mod 29, 0 mod 29 | | | | 0 mod 29, 1 mod 29, 0 mod 29 | | | | 0 mod 29, 0 mod 29, 1 mod 29 | +- -+This is the identity for our particular matrix ring. Now we can try a few other matrix operations.

>> linalg::det(A); 12 mod 29 >> linalg::gaussElim(A); +- -+ | 13 mod 29, 26 mod 29, 28 mod 29 | | | | 0 mod 29, 12 mod 29, 2 mod 29 | | | | 0 mod 29, 0 mod 29, 9 mod 29 | +- -+ >> linalg::gaussJordan(A); +- -+ | 1 mod 29, 0 mod 29, 0 mod 29 | | | | 0 mod 29, 1 mod 29, 0 mod 29 | | | | 0 mod 29, 0 mod 29, 1 mod 29 | +- -+ >> A^10; +- -+ | 22 mod 29, 10 mod 29, 3 mod 29 | | | | 3 mod 29, 21 mod 29, 16 mod 29 | | | | 4 mod 29, 18 mod 29, 5 mod 29 | +- -+ >> exp(A); FAILThe matrix exponential exp(X) is defined as 1 + X + (X^2)/2 + (X^3)/6 + (X^4)/24 + . . . + (X^n)/n! + . . . As you might expect, this is not defined for matrices over our field. For another example, consider polynomials over the integers modulo 2. The definition is similar to the matrix definition above.

>> PK:=Dom::Polynomial(Dom::IntegerMod(2)); Dom::Polynomial(Dom::IntegerMod(2))Now we'll create a polynomial in this domain.

>> p1:=PK(x^17+1); 17 x + 1For good measure, we'll create a second polynomial which looks the same, but is not in our domain.

>> p2:=x^17+1; 17 x + 1Even though they look the same on the screen, MuPAD knows all about them; the type command will tell us.

>> type(p1); Dom::Polynomial(Dom::IntegerMod(2)) >> type(p2); "_plus"(The result of this last command is that

**p2**is an object formed by adding things together.)

>> Factor(p1); 3 4 5 8 2 4 6 7 8 1 (x + 1) (x + x + x + x + 1) (x + x + x + x + x + x + 1) >> Factor(p2); 2 3 4 5 6 7 8 9 10 11 12 13 (x + 1) (x - x - x + x - x + x - x + x - x + x - x + x - x 14 15 16 + x - x + x + 1)The

**domains**package is part of MuPAD which is very much in a state of constant revision and enhancement. For example, at present, it is not possible to perform polynomial division in a polynomial domain.

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Sponsored by Red Hat

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Sponsored by ActiveState

## Trending Topics

August 2014 Issue of Linux Journal: Programming | Aug 01, 2014 |

August 2014 Video Preview | Aug 01, 2014 |

Open-Source Space | Jul 31, 2014 |

Silicon Mechanics Gives Back | Jul 30, 2014 |

Reglue: Opening Up the World to Deserving Kids, One Linux Computer at a Time | Jul 29, 2014 |

diff -u: What's New in Kernel Development | Jul 23, 2014 |

- Open-Source Space
- Silicon Mechanics Gives Back
- Numerical Python
- August 2014 Issue of Linux Journal: Programming
- Reglue: Opening Up the World to Deserving Kids, One Linux Computer at a Time
- New Storage Solution is Music to the Ears of Fast-Growing Digital Music Company
- Linux Systems Administrator
- Download "Linux Management with Red Hat Satellite: Measuring Business Impact and ROI"
- Senior Perl Developer
- Technical Support Rep

## Featured Jobs

Linux Systems Administrator | Houston and Austin, Texas | Host Gator |

Senior Perl Developer | Austin, Texas | Host Gator |

Technical Support Rep | Houston and Austin, Texas | Host Gator |

UX Designer | Austin, Texas | Host Gator |

Web & UI Developer (JavaScript & j Query) | Austin, Texas | Host Gator |

## Comments

## Sellout

Mupad has been bought out by mathworks and all code is now under matlab (junk) licence.

any and all open source work is now dead.

## Thankyou for a well written a

Thankyou for a well written article. TeXmacs acts as an excellent interface to mupad. I assume that the TeXmacs screen display generated by TeX. The graphics is generated by javaview. The combination of TeXmacs and javaview greatly enhance the mupad experience.