# MuPAD

There are a few basic number theory functions in the kernel;
others are contained in the **numlib**
library.

>> isprime(997); TRUE >> Factor(2^67-1); 193707721 761838257287 >> nextprime(1000000); 1000003 >> powermod(9382471,322973,1298377); 880825 >> phi(nextprime(2^20)-1); 498400

Here **phi** is Euler's totient function
returning the number of integers less than and relatively prime to
its argument. These functions allow us to perform simple RSA
encryption and decryption. Suppose we choose two primes and compute
their product:

>> p:=nextprime(5678); 5683 >> q:=nextprime(6789); 6791 >> N:=p*q; 38593253Now we have to choose an integer e relatively prime to (p-1)*(q-1); a smaller prime will do; say e:=17.

>> e:=17:The values e and N are our “public key”. Now we find the d, the inverse of e modulo (p-1)*(q-1). This is very easily done using the convenient overloading of the reciprocal function:

>> d:=1/e mod (p-1)*(q-1); 6808373Suppose someone wishes to send us a message M < N; say

>> M:=24367139;They can encrypt it using our public key values:

>> M1:=powermod(M,e,N); 18476508We can now decrypt this using the value d (and N):

>> powermod(M1,d,N); 24367139This is indeed the value of the original message.

We have seen a glimpse of MuPAD's symbolic abilities in the equation solving above. But MuPAD can do much more than this: all manner of algebraic simplification; rewriting in a different form; partial fractions; and so on.

>> expand((x+2*y-3*z)^4); 4 4 4 3 3 3 3 3 x + 16 y + 81 z + 32 x y + 8 x y - 108 x z - 12 x z - 216 y z - 3 2 2 2 2 2 2 2 96 y z + 216 x y z - 144 x y z - 72 x y z + 24 x y + 54 x z + 2 2 216 y z >> Factor(%); 4 (x + 2 y - 3 z) >> sum(1/(k*(k+2)*(k+4)),k=1..n); 2 3 4 310 n + 337 n + 110 n + 11 n ---------------------------------------- 2 3 4 4800 n + 3360 n + 960 n + 96 n + 2304 >> partfrac(%); 1 1 1 1 --------- - --------- - --------- + --------- + 11/96 8 (n + 3) 8 (n + 1) 8 (n + 2) 8 (n + 4) >> normal(%); 2 3 4 310 n + 337 n + 110 n + 11 n ---------------------------------------- 2 3 4 4800 n + 3360 n + 960 n + 96 n + 2304 >> Factor(%); 2 n (n + 5) (55 n + 11 n + 62) ---------------------------------- 96 (n + 1) (n + 2) (n + 3) (n + 4) >> sum(sin(k*x),k=1..n); (I exp(-I x) - I exp(I x) + I exp(-I n x) - I exp(I n x) - I exp(- I x - I n x) + I exp(I x + I n x)) / 4 - 2 exp(-I x) - 2 exp(I x) >> rewrite(%,sincos); (2 sin(x) + 2 sin(n x) + I cos(x + n x) - 2 sin(x + n x) - I cos(- x - n x) ) / 4 - 4 cos(x)

MuPAD's calculus skills are excellent. It implements very powerful algorithms for differentiation, integration, and limits.

>> diff(x^3,x); 2 3 x >> diff(exp(exp(x)),x$4); 2 3 exp(x) exp(exp(x)) + 7 exp(x) exp(exp(x)) + 6 exp(x) exp(exp(x)) + 4 exp(x) exp(exp(x))

The dollar operator, **$**, is MuPAD's
sequencing operator. As with most operators, it is overloaded; in
the context of a derivative it is interpreted as a multiple
derivative. We can of course also perform partial differentiation.

>> int(sec(x),x); ln(2 sin(x) + 2) ln(2 - 2 sin(x)) ---------------- - ---------------- 2 2 >> int(cos(x)^3, x=-PI/4..PI/3); 1/2 1/2 5 2 3 3 ------ + ------ 12 8 >> int(E^(-x^2),x=0..0.5); / 1 \ int| --------, x = 0..0.5 | | 2 | | x | \ exp(1) / >> float(%); 0.461281006412792448755702936740453103083759088964291146680472565934983884\ 2952938567126622486999424745If we require only a numeric result, then we don't want to force MuPAD to attempt a symbolic or exact solution first. In such a case we may use the

**hold**command, which returns the input unevaluated, but “holds” onto it for the purposes of later evaluation. Thus we may enter:

>> hold(int(exp(-x^2),x=0..0.5));followed by the

**float**command.

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Sponsored by Red Hat

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Sponsored by ActiveState

Image Manipulation with ImageMagick | Apr 17, 2014 |

Non-Linux FOSS: Angry IP | Apr 16, 2014 |

Encrypting Your Cat Photos | Apr 15, 2014 |

Numerical Python | Apr 11, 2014 |

Speed Test for Nerds | Apr 10, 2014 |

DNSSEC Part II: the Implementation | Apr 08, 2014 |

- You have to be careful there

7 weeks 4 days ago - Wonder when LJ is going to

7 weeks 4 days ago - Puerto Rico Free Software

7 weeks 5 days ago - Wepaa!!

8 weeks 6 hours ago - I hate voice commands

8 weeks 20 hours ago - usabilty --- AGAIN with this nonsense

8 weeks 21 hours ago - Don't make excuses

8 weeks 1 day ago - Sorry to let you know, but

8 weeks 1 day ago - Ridiculous statement. Not a

8 weeks 1 day ago - Dragon

8 weeks 2 days ago

## Win a Tegra Note 7!

We're giving away one of these super cool NVIDIA Tegra Note 7 tablets in April, courtesy of Microway.

Come back every day and enter to increase your chances of winning.

## Poll

## Featured Jobs

Linux Systems Administrator | Houston and Austin, Texas | Host Gator |

Senior Perl Developer | Austin, Texas | Host Gator |

Technical Support Rep | Houston and Austin, Texas | Host Gator |

UX Designer | Austin, Texas | Host Gator |

Web & UI Developer (JavaScript & j Query) | Austin, Texas | Host Gator |

## Comments

## Sellout

Mupad has been bought out by mathworks and all code is now under matlab (junk) licence.

any and all open source work is now dead.

## Thankyou for a well written a

Thankyou for a well written article. TeXmacs acts as an excellent interface to mupad. I assume that the TeXmacs screen display generated by TeX. The graphics is generated by javaview. The combination of TeXmacs and javaview greatly enhance the mupad experience.