# MuPAD

There are a few basic number theory functions in the kernel;
others are contained in the **numlib**
library.

>> isprime(997); TRUE >> Factor(2^67-1); 193707721 761838257287 >> nextprime(1000000); 1000003 >> powermod(9382471,322973,1298377); 880825 >> phi(nextprime(2^20)-1); 498400

Here **phi** is Euler's totient function
returning the number of integers less than and relatively prime to
its argument. These functions allow us to perform simple RSA
encryption and decryption. Suppose we choose two primes and compute
their product:

>> p:=nextprime(5678); 5683 >> q:=nextprime(6789); 6791 >> N:=p*q; 38593253Now we have to choose an integer e relatively prime to (p-1)*(q-1); a smaller prime will do; say e:=17.

>> e:=17:The values e and N are our “public key”. Now we find the d, the inverse of e modulo (p-1)*(q-1). This is very easily done using the convenient overloading of the reciprocal function:

>> d:=1/e mod (p-1)*(q-1); 6808373Suppose someone wishes to send us a message M < N; say

>> M:=24367139;They can encrypt it using our public key values:

>> M1:=powermod(M,e,N); 18476508We can now decrypt this using the value d (and N):

>> powermod(M1,d,N); 24367139This is indeed the value of the original message.

We have seen a glimpse of MuPAD's symbolic abilities in the equation solving above. But MuPAD can do much more than this: all manner of algebraic simplification; rewriting in a different form; partial fractions; and so on.

>> expand((x+2*y-3*z)^4); 4 4 4 3 3 3 3 3 x + 16 y + 81 z + 32 x y + 8 x y - 108 x z - 12 x z - 216 y z - 3 2 2 2 2 2 2 2 96 y z + 216 x y z - 144 x y z - 72 x y z + 24 x y + 54 x z + 2 2 216 y z >> Factor(%); 4 (x + 2 y - 3 z) >> sum(1/(k*(k+2)*(k+4)),k=1..n); 2 3 4 310 n + 337 n + 110 n + 11 n ---------------------------------------- 2 3 4 4800 n + 3360 n + 960 n + 96 n + 2304 >> partfrac(%); 1 1 1 1 --------- - --------- - --------- + --------- + 11/96 8 (n + 3) 8 (n + 1) 8 (n + 2) 8 (n + 4) >> normal(%); 2 3 4 310 n + 337 n + 110 n + 11 n ---------------------------------------- 2 3 4 4800 n + 3360 n + 960 n + 96 n + 2304 >> Factor(%); 2 n (n + 5) (55 n + 11 n + 62) ---------------------------------- 96 (n + 1) (n + 2) (n + 3) (n + 4) >> sum(sin(k*x),k=1..n); (I exp(-I x) - I exp(I x) + I exp(-I n x) - I exp(I n x) - I exp(- I x - I n x) + I exp(I x + I n x)) / 4 - 2 exp(-I x) - 2 exp(I x) >> rewrite(%,sincos); (2 sin(x) + 2 sin(n x) + I cos(x + n x) - 2 sin(x + n x) - I cos(- x - n x) ) / 4 - 4 cos(x)

MuPAD's calculus skills are excellent. It implements very powerful algorithms for differentiation, integration, and limits.

>> diff(x^3,x); 2 3 x >> diff(exp(exp(x)),x$4); 2 3 exp(x) exp(exp(x)) + 7 exp(x) exp(exp(x)) + 6 exp(x) exp(exp(x)) + 4 exp(x) exp(exp(x))

The dollar operator, **$**, is MuPAD's
sequencing operator. As with most operators, it is overloaded; in
the context of a derivative it is interpreted as a multiple
derivative. We can of course also perform partial differentiation.

>> int(sec(x),x); ln(2 sin(x) + 2) ln(2 - 2 sin(x)) ---------------- - ---------------- 2 2 >> int(cos(x)^3, x=-PI/4..PI/3); 1/2 1/2 5 2 3 3 ------ + ------ 12 8 >> int(E^(-x^2),x=0..0.5); / 1 \ int| --------, x = 0..0.5 | | 2 | | x | \ exp(1) / >> float(%); 0.461281006412792448755702936740453103083759088964291146680472565934983884\ 2952938567126622486999424745If we require only a numeric result, then we don't want to force MuPAD to attempt a symbolic or exact solution first. In such a case we may use the

**hold**command, which returns the input unevaluated, but “holds” onto it for the purposes of later evaluation. Thus we may enter:

>> hold(int(exp(-x^2),x=0..0.5));followed by the

**float**command.

## Geek Guides

Practical (and free!) books for the most technical people on the planet.

- NEW: Get in the Fast Lane with NVMe
- NEW: Take Control of Growing Redis NoSQL Server Clusters
- Linux in the Time of Malware
- Apache Web Servers and SSL Encryption
- Build a Private Cloud for Less Than $10,000!

**Plus many more.**

## Trending Topics

## Upcoming Webinar

### Getting Started with DevOps - Including New Data on IT Performance from Puppet Labs 2015 State of DevOps Report

August 27, 2015

12:00 PM CDT

DevOps represents a profound change from the way most IT departments have traditionally worked: from siloed teams and high-anxiety releases to everyone collaborating on uneventful and more frequent releases of higher-quality code. It doesn't matter how large or small an organization is, or even whether it's historically slow moving or risk averse — there are ways to adopt DevOps sanely, and get measurable results in just weeks.

Free to *Linux Journal* readers.

August 2015 Issue of Linux Journal: Programming | Aug 03, 2015 |

August 2015 Video Preview | Aug 03, 2015 |

Django Models and Migrations | Jul 30, 2015 |

Secure Server Deployments in Hostile Territory, Part II | Jul 29, 2015 |

Hacking a Safe with Bash | Jul 28, 2015 |

KDE Reveals Plasma Mobile | Jul 28, 2015 |

- August 2015 Issue of Linux Journal: Programming
- Django Models and Migrations
- Hacking a Safe with Bash
- Secure Server Deployments in Hostile Territory, Part II
- The Controversy Behind Canonical's Intellectual Property Policy
- Huge Package Overhaul for Debian and Ubuntu
- Shashlik - a Tasty New Android Simulator
- Embed Linux in Monitoring and Control Systems
- KDE Reveals Plasma Mobile
- General Relativity in Python

## Comments

## Sellout

Mupad has been bought out by mathworks and all code is now under matlab (junk) licence.

any and all open source work is now dead.

## Thankyou for a well written a

Thankyou for a well written article. TeXmacs acts as an excellent interface to mupad. I assume that the TeXmacs screen display generated by TeX. The graphics is generated by javaview. The combination of TeXmacs and javaview greatly enhance the mupad experience.