Using Linux in a Control and Robotics Lab

How a lab at Queen's University is using Linux to develop programs and control hardware experiments.

The Mathematics and Engineering program at Queen's University in Kingston, Ontario operates a control and robotics laboratory as part of the course offerings in the control systems area. The lab experiments use our custom-built electro-mechanical setups and require the students to write algorithms in C for controlling the hardware.

The lab began using C under DOS as the software environment for the lab experiments, but not all students had an easy time with the environment. Generally, it was too easy for configuration files to be inadvertently changed with frustrating consequences. Subsequently, an integrated experiment environment known as dlxlab has been developed for simulating and running control lab experiments. It consists of a single program, run as dlxsim for simulations or as dlxrun for controlling hardware experiments. The program was developed using the XView toolkit under Linux (see “Programming with XView” by Michael Hall, LJ, March 1998), and operates in the lab on a variety of PC-compatible hardware running Linux 1.2.13.

dlxlab Design Goals

The students taking the lab vary widely in computing background and skill. The primary intent of the control labs is to investigate the application of control theory to actual motors, carts, inverted pendula and so on, without having software operation dominate the experience. On the other hand, understanding low-level interfacing code is also a desirable outcome, so the hardware interface has to be “visible”.

In order to design a control algorithm for a physical system, one must have a mathematical model of the system to be controlled in the form of either differential or difference equations, and knowledge of the physical parameters in the model. The user interface to dlxlab was designed so that, as far as possible, this is the only information that must be supplied by the user.

This goal is attained for the case of the program running in simulation mode. For the situation where actual hardware is being controlled, information describing the hardware interface must also be provided, although it can be largely hidden from the user through header files.

The user input to the program takes place through interactive construction of a system file which describes the system under investigation.

System Files

To simulate a system, one invokes dlxsim with a system description file as argument.

dlxsim sim.sys &

One of the lab experiments consists of a pair of track-mounted carts, coupled by springs and driven by a servomotor. A simple system file for simulating such a pair of spring-coupled carts is shown in Listing 1. The format of the system file is a sequence of begin ... end delimited blocks. The blocks are of two types:

  1. Definition blocks establishing identifiers for variables (including parameters)

  2. Code blocks containing C code sequences which are executed by the program to initialize variables, as well as numerically integrate the governing differential equations to simulate the system

Executing A Simulation

Figure 1. Main Program Panel and Other Windows

The main program panel (see Figure 1) contains a “Build” button, which when pressed causes processing of the system file. That is, the user system file is converted into a series of C code files by a parsing process. The files are compiled to a shared object file by gcc, and the contents of the resulting shared object module are dynamically linked into dlxsim as it runs. The linked code contains not just the system differential equations, but also modules for interactively manipulating parameters and plotting results on the basis of the variable names provided in the system file.

Figure 2. Run Manager

Assuming that the system file contains no syntactic errors, the program log window contains only progress messages, and a pop-up panel for controlling simulations appears (Figure 2). As long as only parameter changes are made, a series of simulation runs can be made. Plotting and printing is handled by gnuplot running as a child process.

If the system file contains errors, the error location is reported in the log window, and the pop-up does not appear. The errors are caught either at the parsing level or within the C code segments. In the latter case, the error messages from gcc refer to lines in the user system file, since the generated C files include #line statements referring to the user system file. Since the dlxsim system file edit window is an XView textsw, it inherits the line searching menus associated with XView applications.

Simulations can be run and plotted, as long as the system file contents (such as variable names, equations of motion and so on) are not changed. If such changes are made, the “ReBuild” button must be invoked to cause freeing of resources, recompilation of the dynamic module and relinking of the generated codes.

______________________

White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState