The Crystal Experiment

Linux is now being used in high-energy nuclear studies in Geneva by CERN.
Conclusion

Thanks to the introduction of Linux in our lab, we were able to realize a complete data acquisition and monitoring system using an off-the-shelf Pentium PC and a low-cost CAMAC board.

The system has been performing flawlessly since the beginning of 1996, and the data collected have been used to study the properties of PWO crystals, which will be used in the CMS experiment at CERN.

The key points in using Linux were the availability of the kernel code and the enthusiasm and technical knowledge of the Linux community which enabled us to create a personalized device driver for our data acquisition system. The standard UNIX tools and the GNU compilers guaranteed a perfect integration with the existing machines and an immediate acceptance of the system by all the physicists in our group.

As soon as we started to show our work, we were invited to several congresses dedicated to computing for high-energy physics and data acquisition systems all around Europe (the PCaPAC'96 Workshop in Hamburg, Germany, the ESONE'97 Workshop at CERN and the CHEP'97 Conference in Berlin, Germany). Everywhere we got in touch with many other Linux enthusiasts working on related items; the interest of the high-energy physics community in Linux is very high indeed.

We now plan to use this same system for a larger automatic bench which will be used in the next six years to measure the properties of the tens of thousands of crystals which will be used to build the electromagnetic calorimeter of the CMS experiment.

For those interested in our work, an archive containing the latest version of the device driver code and the interface libraries can be found on our FTP site at ftp://ftpl3.roma1.infn.it/pub/linux/local/.

Resources

Emanuele Leonardi got his Ph.D. in physics in 1997 at the University “La Sapienza” in Rome. He is now working as a technology researcher for the National Institute of Nuclear Physics in Rome.

Both authors worked in the L3 experiment at CERN where they published several physics papers and are now collaborating on the CMS experiment R&D phase.

Giovanni Organtini got his Ph.D. in physics in 1995 at the University “La Sapienza” in Rome. He is now a physics researcher at the University RomaTRE in Rome.

Both authors worked in the L3 experiment at CERN where they published several physics papers and are now collaborating on the CMS experiment R&D phase.

______________________

Webinar
One Click, Universal Protection: Implementing Centralized Security Policies on Linux Systems

As Linux continues to play an ever increasing role in corporate data centers and institutions, ensuring the integrity and protection of these systems must be a priority. With 60% of the world's websites and an increasing share of organization's mission-critical workloads running on Linux, failing to stop malware and other advanced threats on Linux can increasingly impact an organization's reputation and bottom line.

Learn More

Sponsored by Bit9

Webinar
Linux Backup and Recovery Webinar

Most companies incorporate backup procedures for critical data, which can be restored quickly if a loss occurs. However, fewer companies are prepared for catastrophic system failures, in which they lose all data, the entire operating system, applications, settings, patches and more, reducing their system(s) to “bare metal.” After all, before data can be restored to a system, there must be a system to restore it to.

In this one hour webinar, learn how to enhance your existing backup strategies for better disaster recovery preparedness using Storix System Backup Administrator (SBAdmin), a highly flexible bare-metal recovery solution for UNIX and Linux systems.

Learn More

Sponsored by Storix