The Best Without X

Small computers, especially those with little memory, don't run the X Window System—or any other graphic environment—very smoothly. An intelligent keyboard configuration and use of the gpm mouse server will help you exploit your small Linux box to its fullest.

If your system doesn't run X-Windows, you may miss the mouse support that makes interactive programs so easy to use. gpm, the general purpose mouse server, is designed with you in mind. Instead of having a multitude of mouse drivers, several from each mouse vendor, some that work well, others that don't, you can run gpm, which can talk to all mice, and works quite well. This article explains how to set up gpm to work with your mouse and programs, and also explains how to set up your text console to work the best for you.

The gpm program is derived from the older selection program, which was solely for cut-and-paste on the Linux console. gpm acts like selection until a client requests mouse events. Because gpm manages each console as an independent entity, you can use your multi-console text screen like a multi-window graphic environment. This article refers to gpm-1.0.

Configuring the Mouse Device

One major problem with Linux is hardware compatibility, and the mouse is no exception. Companies are always releasing new mice, and each of them provides a different mouse driver for DOS. Linux users are left alone with their device and no driver. Fortunately, companies tend to converge on a few “standard” protocols, which are supported by both XFree86 and gpm. Moreover, the gpm package includes gpm-test, which can help in detecting your own mouse port and protocol, and which suggests which command-line options you should use to invoke the daemon.

You must provide the protocol name and options to gpm on the command line, together with your own preferences. These will affect all mouse response until the server dies. One preference allows button reordering: left-handed people can reorder the buttons by using the command line option -B 321, and owners of two-button devices can use -B 132 to use the right button as if it were the middle one, a useful way to paste the cut-buffer in Emacs without modifying Emacs itself. The current version of the gpm server duplicates the functionality of both mconv2 and MultiMouse, and can act as a “repeater”. You can merge the events from two different devices and pass them along to the X server. This is useful if you use a laptop with both an internal pointer and an external mouse. If you'd like to use one mouse in each hand but keep the internal trackball active, however, gpm can't help you—no more than two mouse devices can be read at a time.

The “repeater” option is automatically enabled if you read two mice, but can be triggered independently; if you use gpm as a repeater, the X server can be configured to read /dev/gpmdata, a fifo named pipe, where gpm puts mouse packets received while the console is in graphic mode. This option is meant to be used by owners of busmice who want to multiplex text-only and X operation without killing and restarting the daemon. Owners of new dual-mode mice, which run the three-button protocol only if the middle button is kept down at mouse initialization, will enjoy it as well, because the device is initialized only at boot time.

How Does gpm Work?

The core of the gpm daemon is currently built around the select()system call and the process runs in the user space of the systems memory. The main loop of the daemon listens to a Unix-domain socket and to the mouse, and uses them in conjunction to multiplex event retrieval and management of new clients. The main loop of gpm can be (and has been) used to build a concurrent daemon for network services by modifying just a few details.

The choice of a user-space server for the mouse was originally meant to help owners of low-end boxes—the process could be swapped out when not in use and thus save a little precious memory. Unfortunately, when you use Emacs, a perceptible delay in delivery of mouse events can severely degrade performance, and combined use of mouse and keyboard is completely unreasonable on a slightly loaded machine.

The swap-in delay can be removed by locking the process in memory, but in the case of Emacs two processes should be locked in memory. The goal for gpm-2.0, which will supersede the current version, is to provide the choice between a user process and a kernel module. The advantage of running a kernel module is mainly fewer context-switches (and no swap-in delay whatsoever), while the main disadvantage is the waste of memory. The module alternative will offer the same interface to client applications, but will use a device node instead of a socket.

______________________

Webinar
One Click, Universal Protection: Implementing Centralized Security Policies on Linux Systems

As Linux continues to play an ever increasing role in corporate data centers and institutions, ensuring the integrity and protection of these systems must be a priority. With 60% of the world's websites and an increasing share of organization's mission-critical workloads running on Linux, failing to stop malware and other advanced threats on Linux can increasingly impact an organization's reputation and bottom line.

Learn More

Sponsored by Bit9

Webinar
Linux Backup and Recovery Webinar

Most companies incorporate backup procedures for critical data, which can be restored quickly if a loss occurs. However, fewer companies are prepared for catastrophic system failures, in which they lose all data, the entire operating system, applications, settings, patches and more, reducing their system(s) to “bare metal.” After all, before data can be restored to a system, there must be a system to restore it to.

In this one hour webinar, learn how to enhance your existing backup strategies for better disaster recovery preparedness using Storix System Backup Administrator (SBAdmin), a highly flexible bare-metal recovery solution for UNIX and Linux systems.

Learn More

Sponsored by Storix