Parallel Programming with NVIDIA CUDA

 in
Using hardware acceleration via General Programming on stock GPUs (GPGPU), I've sped up my algorithms by more than tenfold. This article shows how you can achieve these results too!
Conclusion

If parallelization of your algorithm is possible, using CUDA will speed up your computations dramatically, allowing you to make the most out of your hardware.

The main challenge consists in deciding how to partition your problem into chunks suitable for parallel execution. As with so many other aspects in parallel programming, this is where experience and—why not—imagination come into play.

Additional techniques offer room for even more improvement. In particular, the on-chip shared memory of each compute node allows further speedup of the computation process.

Alejandro Segovia is a parallel programming advisor for CoroWare. He is also a contributing partner at RealityFrontier. He works in 3-D graphic development and GPU acceleration. Alejandro was recently a visiting scientist at the University of Delaware where he investigated CUDA from an academic standpoint. His findings were published at the IEEE IPCCC Conference in 2009.

______________________

Comments

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.

The statement minima[y][x] =

Anonymous's picture

The statement
minima[y][x] = (norm(field[y][x]) < threshold) ? true : false
may incur branching penalty

You can just use the first part
minima[y][x] = (norm(field[y][x]) < threshold)

White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState