Introducing L20rk: the Linux Laptop Orchestra

Using Linux and a few extra parts, the Linux Laptop Orchestra from Virginia Tech is music to our ears, in more ways than one.
And Then There Was L2Ork

The success of the Princeton and Stanford groups inspired Ico Bukvic to form a similar group at Virginia Tech. However, his vision of the laptop orchestra would take the franchise into a new direction. Ico wisely adopted the Princeton group's general design and organization, but his Linux background compelled him to improve the ensemble's affordability and accessibility.

By 2007, Ico had founded the Digital Interactive Sound and Intermedia Studio (DISIS) at Virginia Tech with the intention of “fostering cutting-edge research as well as innovative approaches to interactive multimedia art genre”, to quote from the DISIS Web site. With such an infrastructure in place, Ico concluded that DISIS would be a natural fit for the world's first Linux-based laptop orchestra.

Early in 2009, Ico received an internal grant from the Institute for Society, Culture and Environment at Virginia Tech, in collaboration with his colleague Dr Tom Martin, Associate Professor of Electrical and Computer Engineering. By the spring, the project had acquired greater support from Virginia Tech as well as from external sponsors that include the Sweetwater company, MSI Computer and the Roland Corporation. At that time, the DISIS developed its own design for a hemispherical speaker and began assembling the various other hardware and software components needed for the debut of the Linux Laptop Orchestra in the fall—all told, a fair amount of achievement for a year's work. Since then, the group has expanded to include Dr Eric Standley (Professor of Art) and seven undergraduates.

In December 2009, the Linux Laptop Orchestra made its official world debut in the Squires Studio Theater at Virginia Tech (Figure 1). According to eye-and-ear witnesses, the house was jammed, and the performance was a great success. Critical coverage was positive, and the event even made it to the hallowed pages of Slashdot. Clearly, fame had come to the L2Ork.

Figure 1. L2Ork Debut Performance

The Hardware

Let's take a closer look at L2Ork's physical plant. The orchestra is currently configured for up to 15 players. Each player operates a basic system that includes an MSI Wind Netbook (Figure 2) with a Cakewalk UA-1G USB audio interface, Nintendo Wiimote and Nunchuk controllers, and a custom “hemipod” speaker array. The hemipods are connected to three shared subwoofer systems.

Figure 2. MSI Wind Netbook with Custom Software

The L2Ork FAQ page notes that the decision to employ the Nintendo controllers resulted from a need to replace the Apple machines. The Princeton group exploits accelerometer hardware built in to the MacBook and PowerBook, but the Wiimote and Nunchuk controllers have proven to be a happy choice. They are well supported by Linux, are sufficiently sensitive for deployment as musical controllers, and their gestural geometry includes a Z-axis. Also, everyone has fun playing with them.

The integrated audio hardware on most laptops is insufficiently powerful for the typical needs of a desktop audio production system, much less for the needs of a member of a laptop orchestra. The L2Ork's Wind Netbooks are connected to the UA-1G, a USB audio interface with stereo I/O supporting sample rates up to 96kHz and bit depth to 24 bits. The unit includes decent analog-to-digital and digital-to-analog converters and provides RCA and optical connections for S/PDIF digital I/O. I was surprised to learn that MIDI is not a feature of the UA-1G, and I suspect that at some future time, the L2Ork crew will want to add MIDI connectivity to their network arsenal.

As you can see in Figure 3, the hemipods are definitely eye-catchers. An amplifier and six speakers are mounted within a hemisphere enclosure for a radiant 6-channel sound dispersal (Figure 4). Each seat in the group has its own pod, and each pod is controlled by its single user. The pods are potentially the most expensive component to the orchestra, but the L2Ork group has published complete directions for users who want to cut costs by building their own arrays.

Figure 3. L2Ork Hemipod

Figure 4. The Hemipod Disassembled

______________________

Similis sum folio de quo ludunt venti.

White Paper
Linux Management with Red Hat Satellite: Measuring Business Impact and ROI

Linux has become a key foundation for supporting today's rapidly growing IT environments. Linux is being used to deploy business applications and databases, trading on its reputation as a low-cost operating environment. For many IT organizations, Linux is a mainstay for deploying Web servers and has evolved from handling basic file, print, and utility workloads to running mission-critical applications and databases, physically, virtually, and in the cloud. As Linux grows in importance in terms of value to the business, managing Linux environments to high standards of service quality — availability, security, and performance — becomes an essential requirement for business success.

Learn More

Sponsored by Red Hat

White Paper
Private PaaS for the Agile Enterprise

If you already use virtualized infrastructure, you are well on your way to leveraging the power of the cloud. Virtualization offers the promise of limitless resources, but how do you manage that scalability when your DevOps team doesn’t scale? In today’s hypercompetitive markets, fast results can make a difference between leading the pack vs. obsolescence. Organizations need more benefits from cloud computing than just raw resources. They need agility, flexibility, convenience, ROI, and control.

Stackato private Platform-as-a-Service technology from ActiveState extends your private cloud infrastructure by creating a private PaaS to provide on-demand availability, flexibility, control, and ultimately, faster time-to-market for your enterprise.

Learn More

Sponsored by ActiveState