

GEEK GUIDE Tame the Docker Life Cycle with SUSE

2

The Container Revolution ���5

The Dockerized World ��7

Deploying Containers and Images with SUSE ��������������������9

Create a Local Repository with Portus �����������������������������14

Maintaining It All with zypper and zypper-docker ������������20

Manage Your Containers with Orchestration Tools ����������25

Try Out the SUSE Container Stack ������������������������������������27

Resources ��27

Table of Contents

JOHN S. TONELLO is the Director of IT and Communications Manager for NYSERNet,
New York’s regional optical networking company, serving the state’s colleges, universities
and research centers. He’s been a Linux user and enthusiast since building his first
Slackware system from diskette more than 20 years ago.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2016 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE Tame the Docker Life Cycle with SUSE

4

About the Sponsor

SUSE®, a Micro Focus company, provides and supports

enterprise-grade Linux and open-source solutions with

exceptional service, value and flexibility. With partners

and communities, we innovate, adapt and deliver secure

Linux, cloud infrastructure and storage software to create

solutions for mixed enterprise IT environments. We help

customers harness the benefits and power of an open

enterprise that can empower their possibilities.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

5

It’s no accident or mere passing fad that containers are

revolutionizing how IT shops of all sizes do their work.

Whether you’re looking to make better use of existing

data-center resources or improve portability to the cloud,

Docker and the new-found freedom it offers to use virtual

environments for everything from development to enterprise

applications holds a lot of promise.

The challenge is figuring out how best to move beyond

a standard Docker install to an enterprise-worthy solution

Tame the
Docker Life
Cycle with
SUSE
 JOHN S. TONELLO

GEEK GUIDE Tame the Docker Life Cycle with SUSE

6

that’s secure, easy to manage and scalable. It’s also

important to find ways to manage all your containers easily

as well as the images you modify and plan to reuse. After

all, containers are only part of any enterprise, which is

now a healthy mix of bare-metal boxes, virtual machines,

containers and on- and off-premises clouds. Tools that

can help provide a common framework—and familiar

interfaces—are critical.

With SUSE Enterprise Linux Server 12 and the tools it

offers, you and your team can begin to solve real-world

problems, tame the Docker life cycle, and create, run and

maintain containers at nearly any scale.

The Container Revolution
Anyone managing hardware—from a few blades to full

data centers—knows that bare-metal server deployments

are costly, time-consuming and not very efficient. Even if

you could still afford it, the idea of running one or two

services on a single physical server—maybe a database

here, a website there—is just not practical. Even if you’re

the best system administrator out there, you can really

make only educated guesses about the maximum amount

of CPU, memory and storage a particular service will

need over time. Once you do the math and purchase the

hardware, you know there surely will be hours, days and

weeks when your physical server’s capacity is idle and of

no use to you.

Virtual machines changed all that by enabling more

efficient use of that same physical server’s resources

by sharing them across separate instances of Linux

GEEK GUIDE Tame the Docker Life Cycle with SUSE

7

and Windows servers. With the advent of VMware and

Hyper-V and open-source KVM and Xen, suddenly you

could place multiple servers on a single physical box,

quickly move them between clusters, more easily run

backups and restores, clone them and manage them all

from a single interface.

Even with the dramatic resource savings VMs offer, it’s

clear that many services still don’t need all the overhead

of their own operating systems. In these cases, the

service is what’s critical, not the OS, so why burn so

much costly cloud CPU, memory and storage capacity on

operating system overhead?

Fortunately, lots of smart people asked that same

question and came up with the container concept, first

releasing Linux Containers (LXC) in 2008. The company

that eventually would become Docker initially used the LXC

technology as the base of its Platform-as-a-Service offering

a year later, and in early 2013, it released the open-source

Docker platform that’s in widespread use today.

Since then, containers have become widely adopted, the

breakthrough coming with Docker’s simplicity, which gives

just about anyone the ability to deploy containers quickly

and easily from the Docker Hub. Docker created the de

facto platform-agnostic standard and bolstered it with an

ever-growing community-driven public container repository.

The Dockerized World
Unlike virtual machines, containers create virtual

environments, which share the host’s underlying kernel,

instead of replicating it, while remaining fully isolated

GEEK GUIDE Tame the Docker Life Cycle with SUSE

8

from each other and the host system. Each container

is based on an image that contains the application you

want to run and all its dependencies. For services that

quickly need to scale, such as MySQL and nginx, a Docker

instance running on a single Linux VM can host dozens of

containerized services, acquiring CPU, memory, networking

and storage from the host, but using only sips rather than

gulps of those critical resources.

Ideally, the containers live not just on a single VM or

bare-metal server, but in a clustered environment, drawing

the resources they need on the fly from all the available

CPU, memory, storage and network. Instead of allocating

a couple CPU cores here and this much memory there,

containers take what they need from the cluster.

Of course, containers have limitations that make them

good additions to, not replacements for, your VMs. Perhaps

key among these is the need to run Docker on a VM or

For services that quickly need to scale, such
as MySQL and nginx, a Docker instance
running on a single Linux VM can host
dozens of containerized services, acquiring
CPU, memory, networking and storage from
the host, but using only sips rather than
gulps of those critical resources.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

9

bare-metal host. Docker containers can’t yet be spun up

natively, but they are stateless and can be spun up quickly

on other servers and platforms.

The other drawback for anyone looking to deploy

containers in an enterprise is the nature of the public

repositories. The Docker Hub contains more than 14,000

official and public images. Official images are offered by

SUSE, MariaDB and other companies that make the software.

Public images are submitted by “unofficial” developers.

Since security is critical to any enterprise, some may be

uncomfortable not knowing what’s inside public containers.

It works the other way too. If you have any proprietary or

custom images you don’t want to share in the cloud, you

can’t fully rely on the public Docker Hub for all your needs.

For that, you’ll need to deploy your own local repository.

Fortunately, companies like SUSE and its partners have

created integrated solutions that allow you to take full

advantage of Docker containers and minimize the hassles

that go with them.

Deploying Containers and Images
with SUSE
The popularity of Docker’s container solution has spread

across all platforms, which means you have a lot of

choices. That’s good and bad. Yes, you have the freedom

to deploy Docker containers anywhere (making them

highly portable) and on any freely available Linux distro,

but the sometimes quirky, CLI-heavy nature of deploying

containers makes most newcomers crave integrated tools,

preferably some with graphical interfaces.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

10

SUSE is tackling that issue with Linux Enterprise Server

12, which uses the popular YaST tool for managing many

of the services you need. It has tools that make it a snap

to customize your OS environment and roll it up into a

bootable .iso, OEM image, VM template or container.

To make it easier to get started with Docker on SLES12,

SUSE offers a handy Quick Start guide, which shows how

to prepare your server, install Docker, configure the service,

create and install SUSE images, and deploy your own

private—and secure—container registry with Portus, an

open-source browser-based registry management tool.

I used the guide and other public resources to run the

FIGURE 1. This is a view of YaST under SUSE Enterprise Linux

Server 12, including the yast2-docker module.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

11

SUSE container solution through its paces. I signed up for

a free 60-day SUSE software trial and, for testing purposes,

ran a full version of SUSE Linux Enterprise Server 12 SP1.

The Disk 1 .iso file is 2.95GB, expanding to about 5GB

as a full-functioning VM. I also deployed SUSE’s JeOS VM

version, which was a mere 267MB.

SUSE’s 60-day trial gives you access to all the repositories

for the Docker deployment—and everything else the

SLES12 server has to offer. Since SUSE is RPM-based, you

can use zypper and YaST’s Software Management module

to handle installs.

I started by deploying the server VM and adding the

Container Module to my new system’s software repositories.

That added the Docker package sources so I could install

Docker with a simple:

$ sudo zypper install docker

I added my system user name to the docker group (so I

could run it under my personal login) and started the service.

All the dependencies were handled by the Container Module,

so it was easy to have Docker up and running in moments.

Of course, the real fun begins when you start pulling

down and running container images. If you’ve never done

this before, it’s worth taking some time to explore the

Docker Hub and run some apps. With the built-in isolation,

you never have to worry about messing up your SUSE host

install when you run containers. You even can run multiple

versions of applications side by side, which makes Docker a

great way to test-drive all sorts of goodies.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

12

For most, the speed at which containers boot is the first

surprise. I ran the standard “hello-world” container to verify

my environment and then pulled down MySQL, which took just

seconds to launch. The speed of the first run of any container

depends on your network speed, but once a container is

downloaded, all future boots are local and they’re very fast.

I started the full SLES12 container in about two seconds.

Pulling and running containers from the command line is

a snap, and SUSE offers a graphical module for YaST called

yast2-docker that shows you all of your Docker images

and containers, and gives you ways to manipulate them.

For instance, my running MySQL container appeared in

FIGURE 2. Running a simple docker run command starts up

SLES12 and drops to a bash shell. Running a couple common

Linux commands shows that the container is, indeed, SLES12

and that it has full access to the host VM’s memory and disks.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

13

yast2-docker’s Images and Containers inventory tabs, which

graphically replicate the function of typing docker images

and docker ps on the command line.

More valuable, perhaps, is yast2-docker’s ability to inject

a terminal graphically into any running container or commit

a container to a public or private Docker registry.

FIGURE 3. SUSE Enterprise Linux 12 uses YaST for most

administrative tasks, and the yast2-docker module offers a

graphical way to manage containers, including injecting

a terminal to anything that’s running.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

14

Create a Local Repository with Portus
Your newly created custom images are nice, but

they’re not much use if you can’t share them beyond

a single local repository. For that, you need to publish

them to a shared repository. By default, al l images

pushed to the Docker Hub are public, and if you’re a

commercial user, you have to pay a fee to make more

than one of them private.

It’s not just an issue of cost. For some, pushing assets

to a cloud service they don’t own or control, l ike Docker

Hub, is against company security policies.

You can get past those l imitations by deploying your

own on-premises Docker repository that wil l al low you

to push and pull container images and sti l l update and

maintain them with l ittle hassle.

Installing a local registry is simple enough. Under SUSE, you

can use zypper to install docker-distribution-registry.

Enable it to run at boot time, and you’ve got an on-premises

place to store and share everything you and your team create:

$ sudo zypper install docker-distribution-registry

Configuration is done via the /etc/registry/config.yml

fi le, which enables you to set the root directory, the

port on which the registry runs, certificates, logging

and the l ike. A simple example from Portus shows the

basics (Figure 4).

Leaving it there presents a couple problems though.

By default, this local Docker registry lacks any form of

authentication, which means anyone with access to it

GEEK GUIDE Tame the Docker Life Cycle with SUSE

15

can push and pull—and even overwrite—images stored

there. At the same time, it’s very difficult to keep track of

the images you push to a local Docker registry. It lacks all

the graphical trappings of docker.io and the Docker Hub,

including searching and other functions that make sharing

and collaboration easy.

You can solve those problems with Portus, an open-source

authentication and graphical interface for Docker registry

FIGURE 4. A basic configuration file for docker-distribution-

registry, which serves as a local Docker repository manageable

by Portus.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

16

created by SUSE. Installation is straightforward, because

its packages are included in the same SUSE Containers

Repository used to install Docker:

$ sudo zypper in portus

It’s important to note that Portus is using

docker-registry behind the scenes, not adding an

additional registry to your system.

Your on-premises Docker registry can run without

certificates (and SSL), but best practice for a production system

is to secure it fully. However, during testing and development,

FIGURE 5. When you first open Portus, you’re prompted to set up

an admin user, which becomes the admin user for logging in to your

local registry from the command line.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

17

you can pass an --insecure-registry flag in /etc/sysconfig/

docker, and your registry still will listen on port 5000, but you

won’t have to install any certificates to get it working.

Once the docker-registry and Portus are running, you can

log in and create an account. If your host server is called

my.registry, you’d log in at https://my.registry.

You’ll be prompted to create a new admin user, which you

can use later to log in to your local registry from the command

line. Portus then asks for a name for your new registry and the

FIGURE 6. Connecting Portus to your local docker-registry is

done by giving it a name, and the hostname and port number.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

18

hostname, including the port number (Figure 6).

When you return to the command line to push and

pull images, you connect Docker to your local registry by

logging in using the domain name and port number—but

no https:

$ docker login my.registry:5000

When prompted for a user name and password, use the

credentials you just created at the Portus portal.

It’s critical that the domain name and port you create

in Portus match the domain name and port you put

in /etc/registry/config.yml. If they don’t, you’ll get a

connection error when you try to push your images into

your on-premises registry.

For illustration purposes, I pushed the mysql image

I created (and modified) into my on-premises Docker

repository. Pushing images to Docker is as simple as:

$ docker push image-name:tag

However, if you try that on an image, you’ll send it to

the public Docker Hub, not your on-premises repository.

Instead, you first need to tag your image. I called my SUSE

12 image “myimage” and tagged it like this:

$ docker tag myimage:latest suse.home:5000/jtonello/myimage:latest

Tagging works “silently”; you won’t see any output unless

there’s an error. Once you’ve tagged your image, you can push

GEEK GUIDE Tame the Docker Life Cycle with SUSE

19

it to your local repository and manage it through Portus:

$ docker push suse.home:5000/jtonello/myimage:latest

On the screen, you’ll see the pushing begin and a

count-up of the MB. When it’s complete, you’ll see some

digest output. If you rush over to Portus, you won’t see

your image right away; wait a few minutes for the Portus

Dashboard or Namespaces tabs to refresh.

FIGURE 7. A running version of Portus provides a clean

graphical interface, plus security and other features, to the

locally installed docker-registry. The repository contains

two images ready for sharing.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

20

If you’re unwilling to wait for your local docker-registry to

refresh, you can sync the registry with the Portus database

manually by running a simple command; see the Resources

section at the end of this ebook for more information.

Pulling images from your private repository is essentially

the push directive issued with pull:

$ docker pull suse.home:5000/jtonello/myimage:latest

If my public Docker Hub namespace was also “jtonello”,

and this image existed there, I would tag, push and pull

my images much the same way:

$ docker tag myimage:latest jtonello/myimage:latest

and:

$ docker push jtonello/myimage:latest

and:

$ docker pull jtonello/myimage:latest

The only thing missing in these last examples is the

docker.io domain name, which is appended invisibly when

you’re pushing to the public Docker Hub.

Maintaining It All with zypper
and zypper-docker
One of the challenges of managing containers, and the

GEEK GUIDE Tame the Docker Life Cycle with SUSE

21

images that spawn them, is keeping them up to date.

Fortunately, SLES12 includes zypper-docker, a simple

command-line tool that enables you to list your images,

look for updates and patches, and bring them up to date

without destroying the originals.

It does all that by applying updates to a new image,

never overwriting the old. In fact, zypper-docker wil l fail

if you attempt to overwrite an existing Docker image

with the same name.

You can find out which updates are available by l isting

the updates and patches.

In this case, I had it look for updates of the standard

SLES12 image I pulled:

$ zypper-docker list-updates suse/sles12

FIGURE 8. The SUSE tool zypper-docker lets you check your

Docker images for updates and patches.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

22

Since the container was new, I really didn’t expect any

updates and the results of zypper-docker showed none. The

result was different for my custom image called “myimage”,

which I created earlier:

$ zypper-docker list-updates myimage:latest

FIGURE 9. SUSE’s zypper-docker tool examines a custom image

for updates and finds more than 100, showing both current and

available versions of installed packages.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

23

It found 106 updates available for this image, so I went

ahead and did a full update:

$ zypper-docker update myimage myimage-new

Since updates for this container were available, I ran

the zypper-docker update command, which takes two

arguments: the current name of the image and a name for

FIGURE 10. The zypper-docker tool runs updates on the container

just as it would for a SUSE environment, retrieving and installing

new packages and outputting a new, updated image.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

24

the newly updated container about to be created. By leaving

off the container tags (:latest) for each of the two image

names, zypper-docker assumes :latest and does its thing.

Patches are done in a similar way.

If you forget that you’ve updated or patched a particular

container and run it, nothing will immediately tell you

that you’ve got a new version available. However, issuing

zypper-docker ps will tell you that you’re running an

image that’s been updated and recommend that you stop it

and use the fresher one.

Another nice feature of zypper-docker is its ability to apply

patches in a surgical way. Sometimes you don’t want to

FIGURE 11. The zypper-docker tool can reveal that you’re

running an outdated container.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

25

apply all the updates available because that could break your

application. For those cases, zypper-docker allows you to apply

only the patches or updates that, say, fix security issues.

The Docker philosophy is that the right way to update

an image is to rebuild it from scratch. It’s cleaner. However,

sometimes you just can’t do that, such as when a user is

stuck waiting for an image maintainer to apply security

fixes. With zypper-docker, you can fix that security issue

without breaking the application running inside the container

and allow the user to continue working—safely—until the

maintainer of the Docker image delivers a new release.

Manage Your Containers with
Orchestration Tools
It’s one thing to run a few containers and another thing

entirely to build your enterprise infrastructure with

them. If you have only a handful, sure, but for true

scaling, you need to employ an orchestration tool l ike

Kubernetes or OpenStack.

Each of those is more than a mere container

orchestration tool; they can be used to build entire private

and public clouds. Kubernetes grew out of Google’s need

to manage thousands of instances scattered around the

world, and OpenStack has gained traction as an open-

source alternative to costly licensed cloud platforms. Both

are platform-agnostic, meaning you can run them on just

about anything, on-premises and in the cloud.

As you begin to scale up your container use, orchestration

tools help “objectize” your environment. That is, Kubernetes

and OpenStack (and other tools like them) decouple your

GEEK GUIDE Tame the Docker Life Cycle with SUSE

26

infrastructure from your services and applications. For

example, web and database servers can be run in separate,

low-overhead containers, but share compute and network

namespaces, giving you centralized logic to create, maintain

and heal your container infrastructure. These tools can assign

network addresses and DNS names on the fly, and respond to

your need to, say, scale up during business hours and scale

down after dark.

It comes as no surprise that the combination of

Docker containers and orchestration tools can dramatically

change how you provide resources and services. You can

manage horizontal scaling, automated roll-outs, storage

management, workload management and self-healing

clusters—and use browser-based interfaces to move

beyond command-line tools and scripts alone.

SUSE will soon launch a Kubernetes orchestration solution

that will further enhance the Docker life cycle deployment

with SLES12. That’s good news as you begin to evaluate, test

and deploy containers in your environment. With it, the folks

at SUSE provide you and your team a complete and largely

pain-free way to manage containers and the Docker life cycle.

At the OpenStack Summit in Barcelona, SUSE announced

SUSE will soon launch a Kubernetes
orchestration solution that will further
enhance the Docker life cycle deployment
with SLES12.

GEEK GUIDE Tame the Docker Life Cycle with SUSE

27

its new OpenStack Cloud 7. This is the first release to include

Magnum, an OpenStack component that makes it easy to

deploy Kubernetes clusters. That’s good news for anyone

looking for a painless way to deploy Kubernetes, which can

be difficult and time-consuming.

If you have a multi-tenant environment, Magnum also

makes it easy to give each tenant its own private and isolated

Kubernetes cluster. This “Kubernetes as a Service” can be

done with just a few clicks.

If you’re looking to deploy Kubernetes outside OpenStack,

SUSE recently announced its Container as a Service Platform,

known as SUSE CASP. It will be based on MicroOS, a flavor of

SUSE Enterprise Linux that’s smaller than JeOS and optimized

to run Linux containers and Kubernetes.

Try Out the SUSE Container Stack
You can get a free 60-day trial of SUSE Enterprise Linux

Server 12 (and SLES SP1) and test everything discussed in this

ebook. SUSE supports most platforms, including x86_64, z

and Power and also gives you free access to SUSE OpenStack

Cloud (for x86_64), SUSE Manager and SUSE Enterprise

Storage. Check the Resources section for the URL.n

Resources

n Try SUSE for Free: https://www.suse.com/products/server/download

n Docker Registry: https://docs.docker.com/registry/insecure

n SUSE Docker Quick Start Guide: https://www.suse.com/

documentation/sles-12/dockerquick/data/dockerquick.html

https://www.suse.com/products/server/download
https://docs.docker.com/registry/insecure
https://www.suse.com/documentation/sles-12/dockerquick/data/dockerquick.html

GEEK GUIDE Tame the Docker Life Cycle with SUSE

28

n Docker—Tag, Push and Pull:

https://docs.docker.com/engine/getstarted/step_six

n Kiwi: https://doc.opensuse.org/projects/kiwi/doc

n Kiwi Docker Example: http://flavio.castelli.name/2014/05/06/

building-docker-containers-with-kiwi

n Portus: http://port.us.org

n Portus First Steps: http://port.us.org/docs/first-steps.html

n Portus and Docker Registry Sync: http://port.us.org/features/

1_Synchronizing-the-Registry-and-Portus.html

n zypper-docker: https://github.com/SUSE/zypper-docker

n Containers as a Service Platform: https://www.suse.com/

communities/blog/introducing-suse-containers-service-platform

https://docs.docker.com/engine/getstarted/step_six
https://doc.opensuse.org/projects/kiwi/doc
http://port.us.org
http://port.us.org/docs/first-steps.html
https://github.com/SUSE/zypper-docker
http://flavio.castelli.name/2014/05/06/building-docker-containers-with-kiwi
http://port.us.org/features/1_Synchronizing-the-Registry-and-Portus.html
https://www.suse.com/communities/blog/introducing-suse-containers-service-platform

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Tame the Docker Life Cycle with SUSE
	The Container Revolution
	The Dockerized World
	Deploying Containers and Images with SUSE
	Create a Local Repository with Portus
	Maintaining It All with zypper and zypper-docker
	Manage Your Containers with Orchestration Tools
	Try Out the SUSE Container Stack
	Resources

